

Expanding Your Solutions

Corporate Headquarters

13191 Crossroads Pkwy N., Ste 325 City of Industry, CA 91746 Phone: 800.775.2362

Fax: 626.330.7598 www.cemcosteel.com

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

www.cemcoengineering.com

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

13191 Crossroads Pkwy N., Ste 325 City of Industry, CA 91746 **Phone:** 800.416.2278 **Fax:** 626.249.5004

250VS125-15 (25EQ) VIPERSTUD

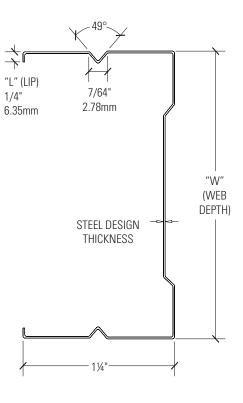
Geometric Properties

2-1/2" x 1-1/4" flange, 15 mil ViperStuds are manufactured from standard G40 hot-dipped galvanized steel. G60 and G90 coatings are available through special order, and may require up-charges and extended lead times.

Steel Thickness

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	"W" Web Sizes (in)	Coating 4.5	Flange (in)	"L" Return Lip (in)	
250VS125-15 (25EQ)	0.0155	0.0147	50	2-1/2	G40	1-1/4	1/4	

Notes: 1. Uncoated steel thickness. Thickness is for carbon sheet steel. 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness. 3. Knockout size for 2-1/2" Stud is 3/4" x 1-3/4". 4. Per ASTM C645 & A1003, Table 1. 5. G60 and G90 available upon request. Will require extended lead time and upcharge.


Color Code (painted on ends): 15 mil: None with Dark Grey band on pallet

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C645 & C754
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-2620 CBC: 2013, 2016, 2019
- IBC: 2012, 2015, 2018, 2021 AISI: S100, S220

LEED v4 for Building and Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

250VS125-15 (25EQ) ViperStud Properties

				Gross Properties					Effective I	Properties					
											Allowable	J	Distortional	Nominal Moment	Critical
											Moment	Nominal Moment ²	Buckling Nominal	for Conventional	Unbraced
Design	Min	Yield	Weight	Area	lx	rx	ly	ry	lxd Sx			Viper	Moment ² Viper	Studs ³	Length ⁷
(in)	(in)	(ksi)	(lb/ft)	(in²)	(in ⁴)	(in)	(in ⁴)	(in)	(in ⁴)	(in³)	Ma (in-k)	Mnl (in-k)	Mnd (in-k)	Mn (in-k)	Lu (in)
0.0155	0.0147	50	0.29	0.085	0.084	0.998	0.017	0.452	0.090	0.042	1.17	2.72	2.12	1.72 (18 mil)	24.8

Notes: 1. Nominal Moments for Viper25 are based on testing. Allowable moment (Ma) is calculated with safety factor of 1.81 in accordance with chapter F of AISI S100-16/S2-20 specification.
2. Nominal moment for Viper20, Viper 30mil, Viper 33mil and

conventional studs are based on calculations per AISI S100-16/S2-20.

- 3. Section properties are in accordance with AISI S100-16/S2-20.
- 4. Web depth-to-thickness ratio exceeds 200. 5. Web depth-to-thickness ratio exceeds 260. 6. ViperStud is considered fully braced

when the unbraced length is less than listed Lu. 7. $K\Phi$ assumed to be zero for distortional buckling moments.

Non-Composite Limiting Heights - Braced at 48" O.C.

Depth		Member	Design	Min	Yield	Spacing (o.c.)	5 PSF			7.5 PSF			10 PSF		
(in)	Gauge	Designation	(in)	(in)	(ksi)		L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360
	25EQ	250VS125-15 (25EQ)	0.0155	0.0147	50	12	11'-10" f	10'-7"	9'-2"	9'-7" f	9'-2"	8'-1"	8'-5" f	8'-5" f	7'-4"
2-1/2		250VS125-15 (25EQ)	0.0155	0.0147	50	16	10'-2" f	9'-7"	8'-5"	8'-5" f	8'-5" f	7'-4"	7'-2" f	7'-2" f	6'-8"
		250VS125-15 (25EQ)	0.0155	0.0147	50	24	8'-5" f	8'-5"f	7'-4"	6'-8" w	6'-8" w	6'-5"			

Notes: 1. Limiting heights are in accordance with AISI S100-16/S2-20 using all steel non-composite design. 2. Limiting heights are established by considering flexure, shear, web crippling and deflection. 3. Lateral-Torsional buckling moments are based on section F of AISI S100-16/S2-20, with max discrete bracing of 48″ o.c. 4. For web crippling, when h/t≤ 200, the web crippling values are computed based on section G6 of AISI S100-16/S2-20, when h/t⇒200, the web crippling values are based on testing with a bearing length of 1″.

5. No web stiffeners are required for studs with h/t < 200, web crippling and shear values have been confirmed by testing. **6.** The factory punchouts are in accordance with AISI standards. The distance from the center of the last punchout to the end of the stud is $12^{"}$. T. Use non-composite tables when 1/2 inch gypsum board, horizontal board, RC channel, furring channel, or sound clips are used. **8.** Review

fire rated assemblies for additional requirements.

"f" - flexure controls; "s" - shear controls; "w" - web crippling controls. No letter next to the number means deflection controls.