# Dense Packing with OPTIMA 

Historically, cellulose has been promoted as the only choice for dense pack applications. However, CertainTeed OPTIMA ${ }^{\oplus}$ loose-fill fiber glass insulation provides the same reductions in air permeance as cellulose while delivering a number of other significant benefits.

OPTIMA offers many additional benefits when compared to cellulose

- Fewer packages needed - less labor, handling and jobsite trash
- Higher R-value per inch (R-25 in $2 \times 6$ ); higher wall R-values
- EPA and BPI approved for weatherization programs and retrofit applications
- GREENGUARD® Gold certified for indoor air quality
- High recycled glass content - exceeds EPA's Recovered Materials Advisory Notice
- Won't absorb moisture or support mold growth
- Naturally noncombustible; no fire-retardant chemicals added
- Doesn't settle
- Less dust
- Faster flowing - helps save time on the job

$36 \%$ fewer bacasata
 increased R-value*



## Cellulose

OPTIMA

OPTIMA $=$ R-25 in $2 \times 6$ wall @ $2.3 \mathrm{lbs} / \mathrm{ft}^{3}$ Cellulose = R-21 in $2 \times 6$ wall @ $3.5 \mathrm{lbs} / \mathrm{ft}^{3}$ Based on a 30 lb bag of cellulose


Dense Packing Installation Guidelines for OPTIMA ${ }^{\oplus}$

| OPTIMA Dense Pack Coverage Chart |  |  |  |  |  |  |  |  | 31 lb Bag |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Construction Type | Cavity Depth | R-Value | Density - Installed <br> (minimum) | Coverage - Net <br> (maximum) | Weight per Unit <br> Area (minimum) | Packages per <br> 1,000 sq. ft. <br> (minimum) |  |  |  |
| $2 \times 4$ | 3.5 | 15 | 2.3 | 46.2 | 0.671 | 21.6 |  |  |  |
| $2 \times 4$ | 4 | 18 | 2.3 | 40.4 | 0.767 | 24.7 |  |  |  |
| $2 \times 6$ | 5.5 | 25 | 2.3 | 29.4 | 1.054 | 34.0 |  |  |  |
| $2 \times 8$ | 7.25 | 32 | 2.3 | 22.3 | 1.390 | 44.8 |  |  |  |
| $2 \times 10$ | 9.25 | 41 | 2.3 | 17.5 | 1.773 | 57.2 |  |  |  |

For dense packing walls to an air permeance of $3.5 \mathrm{cfm} / \mathrm{ft}^{2}$ at 50 pascals pressure differential, use a minimum density of at least 2.3 PCF.

Blowing Machine: Required - fiber agitation and conditioning with air pressure control

1. Machine speed - per manufacturer's recommendation
2. Slide gate - start with $1 / 3$ to $1 / 2$ open
3. Air pressure -2.0 to 2.4 psi ( 55 " to 66 " of $\mathrm{H}_{2} \mathrm{O}$ ) (machine back pressure end of insert tube)
4. Transmission (if applicable) - 2nd gear

## Blowing Hose:

1. Internally corrugated hose required (except for wall insert tube)
2. Smooth transition reducers
3. 10' cavity insert tube:
a. $11 / 4$ " ID w/ $1 / 8^{\prime \prime}$ wall thickness clear vinyl/plastic tube
b. $1 \frac{112 " ~ I D ~ w / ~}{\text { I }} 1 / 8^{\prime \prime}$ wall thickness for larger cavities
( $2 \times 6$ or larger)
c. $1 \frac{1}{2}$ " or $2^{\prime \prime}$ blow hose inserted into floor/ceiling cavities or large sidewall cavities from the attic

| Blowing Hose Assembly* |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Machine Outlet Dia. | 1st Section | Reduce to | 2nd Section | Reduce to | 3rd Section | Reduce to | 4th Section | Reduce to | 5th Section |
| 4" | 4" $\times 0-25^{\prime}$ | $31 / 2$ " | $31122^{\prime \prime} \times 50^{\prime}$ | Follow 3½" Machine Outlet Set Up |  |  |  |  |  |
| $31 / 2^{\prime \prime}$ | $31 / 2^{\prime \prime} \times 0-25^{\prime}$ | 3 " | 3 " $\times 50{ }^{\prime}$ | Follow 3" Machine Outlet Set Up |  |  |  |  |  |
| $3{ }^{\prime \prime}$ | $3 " \times 50 \mathrm{~min}$. | $21 / 2^{\prime \prime}$ | $21 / 2^{\prime \prime} \times 50^{\prime \prime}$ | 2 " | $2^{\prime \prime} \times 50$ | $11 / 2$ " | $11 / 2{ }^{\prime \prime} \times 10-25^{\prime}$ | Insert Tube | $10^{\prime}$ |
| $21 / 2^{\prime \prime}$ | $21 / 2^{\prime \prime} \times 100 \mathrm{~min}$. | $2{ }^{\prime \prime}$ | $2^{\prime \prime} \times 50^{\prime}$ | $11 / 2$ " | $11 / 2{ }^{\prime \prime} \times 10-25^{\prime}$ | Insert Tube | $10^{\prime}$ |  |  |

* Hose length combination to be a minimum of $150^{\prime}$


## Techniques:

1. Preferred -1 hole with tube inserted filling both upwards and downwards until the cavity is filled
2. Alternative -2 holes with tube inserted filling both upwards and downwards at each hole location until cavity is filled

NOTE: See machine manufacturer recommendations for hose length. For mid-size to large machines, 150' minimum is typical. Please ensure you are in compliance with applicable OSHA and EPA regulations on all job sites.


CertainTeed Corporation

