GENERAL INFORMATION

DDI[™]+ (DECK INSERT)

Threaded Insert for Metal Deck

PRODUCT DESCRIPTION

The DDI+ (Deck Insert) is a concrete insert designed for installation in concrete-filled metal deck assemblies (i.e. "pan-deck", "Q-deck"). After installation, the threaded male hanger of the insert protrudes below the surface of the deck. The DDI+ comes in sizes ranging from 3/8" to 7/8" in diameter. The threaded bolt offers adjustability for precise height requirements and guarantees the minimum embedment depth. The longer "T" brace insert plate enables a variety of installation locations in across the deck.

GENERAL APPLICATIONS AND USES

- Seismic Loading and Cracked Concrete
- Hanging Pipe and Sprinkler Systems
- HVAC Ductwork and Strut Channels
- Suspending Trapeze and Cable Trays
- Mechanical Unit Overhead Utilities
- Conduit and Lighting Systems

FEATURE AND BENEFITS

- + Fast and simple to install, low installed cost
- + Pre-mounted self drilling screws for convenient installation
- + Fine-tuned thread length for guaranteed minimum embedment
- + Lengthened "T" brace for more flexible installation positions
- + Provides consistent uniform drop lengths below floor decks in every installation position

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-3958 for concrete-filled metal decks
- Tested and qualified in accordance with ICC-ES AC446 for use in concrete-filled metal decks under the design provisions of ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 (Appendix D)
- Code compliant with the 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC and 2012 IBC/IRC
- Underwriters Laboratories (UL Listed) File No. EX1289, see listing for sizes
- FM Approvals (Factory Mutual) see listing for sizes

GUIDE SPECIFICATIONS

CSI Divisions: 03 15 19 - Cast-In Concrete Anchors and 03 16 00 - Concrete Anchors. Concrete inserts shall be DDI+ as supplied by DEWALT, Towson, MD. Anchor inserts shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor Component	Component Material
Metal Plate	ASTM A1011 Carbon Steel or equivalent (plain)
Hex Head Bolt	ASTM A307 Grade A (zinc plated)

SECTION CONTENTS

General Information	1
Material Specifications	1
Installation Specifications	2
Installation Instructions	3
Performance Data (ASD)	4
Strength Design Information	5
Design Strength Tables (SD)	6
Ordering Information	8

THREAD VERSION

- UNC Thread
- ANCHOR MATERIALS

Plain and zinc plated carbon steel

ANCHOR SIZE RANGE

• 3/8" through 7/8" diameters

SUITABLE BASE MATERIALS

 Normal-weight concrete or lightweight concrete filled metal deck assemblies

Threaded Insert for Meta

INSE

DECK

INSTALLATION SPECIFICATIONS

3 **AECHANICAL ANCHORS**

DDITM+ (DECK INSERT) Threaded Insert for Metal Deck

Design Inf	formation	Notation	Units	3/8-inch	1/2-inch	5/8-inch	3/4-inch	7/8-inch
Nominal bo	lt diameter	da	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)
Bolt thread	size (UNC)	-	in.	3/8-16	1/2-13	5/8-11	3/4-10	7/8-9
Length of	insert bolt	l _{bolt}	in (mm)	8 (203)	8 (203)	8 (203)	8 (203)	8 (203)
Typical drill bit di	iameter for deck	d _{bit}	in.	7/16 or 1/2	9/16 or 5/8	11/16 or 3/4	13/16 or 7/8	15/16 or 1
Nominal overall ler	ngth of insert plate	Lplate	in.² (mm²)	12 (305)	12 (305)	12 (305)	12 (305)	12 (305)
Nominal width	of insert plate	Wplate	in.² (mm²)	1-1/4 (32)	1-1/4 (32)	1-1/4 (32)	2 (51)	2 (51)
Approximate thickr	ness of insert plate	tplate	in. (mm)	3/16 (4.8)	3/16 (4.8)	3/16 (4.8)	3/8 (9.5)	3/8 (9.5)
	Over upper flute	hnom (upperflute)			_	/-		
Minimum nominal	Over flute incline	hnom (upperincline)	in. (mm)	1-3/4	2 (51)	2-3/8 (60)	2-5/8	2-5/8
embeument depti	Over lower flute	h _{nom (lowerflute)}	((((((((((((((((((((((((((((((((((((((((-5)	(31)	(00)	(07)	(07)
	Over upper flute	hef (upperflute)					0.00	
Minimum effective	Over flute incline	hef (upperincline)	in.	1.50 (38)	1.75 (45)	2.00 (51)	2.20	2.05
embeument deptin	Over lower flute	hef (lowerflute)	((((((((((((((((((((((((((((((((((((((((50)	(32)
Minimum concrete	Over upper flute	h _{min (upperflute)}			0.1/0			0.1/4
member thickness	Over flute incline	hmin (upperincline)	in.	2 (51)	2-1/2	3 (76)	3-1/4	3-1/4
(topping thickness)	Over lower flute	hmin (lowerflute)	((((((((((((((((((((((((((((((((((((((((31)	(04)	(70)	(00)	(00)
Minimum flute edge	Over upper flute	Cmin,deck (upperflute)	in. (mm)	N/A	N/A	N/A	N/A	N/A
	Over flute incline	Cmin,deck (upperincline)			N/A	N/A	IN/A	
distance (insert bolt)	Over lower flute	Cmin,deck (lowerflute)	in. (mm)	See Figure C	See Figure C	See Figure C	See Figure C	See Figure C
Minimum spacing distance	Over upper flute	Smin (upperflute)	in. (mm)	1-1/2 (38)	2 (51)	2-1/2 (64)	3 (76)	3-1/2 (89)
(bolt spacing,	Over flute incline	Smin (upperincline)	in.	4-1/2	5-1/4	6	6-5/8	6-5/8
center-to-center)	Over lower flute	Smin (lowerflute)	(mm)	(114)	(133)	(152)	(168)	(168)
	Over upper flute	Cmin (upperflute)		Specifie	d cover requirem	ents for reinforce	ement in accorda	nce with
Minimum deck end distance	Over flute incline	Cmin (upperincline)	in. (mm)	AC318-191	7.9.2(a), ACI 318	3-14 17.7.2 or A	Cl 318-11 7.7, a	as applicable.
	Over lower flute	Cmin (lowerflute)		40a Call De C	prov	ided and/or avail	able.	nems are not
Approx. Thread Projection	Over Upper Flute	_	in	6-1/4	6	5-5/8	5-3/8	5-3/8
(through 3-inch- deep deck)	Over Lower Flute			3-1/4	3	2-5/8	2-3/8	2-3/8
Effective tancile stre	area (incart holt)	Δ	in. ²	0.078	0.142	0.226	0.335	0.462
Ellective tensile stre	iss area (insert doit)	Ase	(mm²)	(50)	(92)	(146)	(212)	(293)
Insert head ne	t bearing area	Abrg	in.² (mm²)	0.17 (110)	0.28 (181)	0.45 (290)	0.65 (419)	0.89 (574)
Minimum specified	l ultimate strength	f _{uta}	psi (N/mm²)			60,000 (400)		
Minimum specifie	ed yield strength	f _{ya}	psi (N/mm²)			36,000 (248)		

1. For installation detail for inserts in concrete-filled steel deck assemblies, see Figures A, B and C (i.e. over upper flute, over flute incline, over lower flute).

2. The insert plate is premouted with a #8-18 self-drilling screw with a #2 drill point (16 gauge max thickness).

DDI+ Insert Detail

INSTALLATION INSTRUCTIONS

Cut (e.g. drill/punch) a hole in the steel deck to the hole size required by the threaded bolt of the insert.

Figure A

DDI+ Concrete Inserts Installed Through the Soffit of Concrete-Filled Steel Deck Floor and Roof Assemblies (Over Upper Flute) $^{\scriptscriptstyle (23)}$

Figure C

DDI+ Concrete Inserts Installed Through the Soffit of Concrete-Filled Steel Deck Floor and Roof Assemblies (Over Lower Flute)^{1,2,5}

Place the threaded bolt of the insert through the hole in the steel deck.

The metal plate of the insert must be on the top of the deck flutes. The metal plate can (optionally) be secured to the deck using the pre-assembled self-drilling screws.

Figure B

DDI+ Concrete Inserts Installed Through the Soffit of Concrete-Filled Steel Deck Floor and Roof Assemblies (Over Flute Incline) $^{\rm (2.4)}$

SAND-LIGHTWEIGHT CONCRETE OR NORMAL-WEIGHT CONCRETE OVER STEEL DECK (MIN. 3,000 PSI)

- Installations require a minimum concrete member topping thickness from the top of the upper flute as given in the Design Information Table.
- Inserts may be placed on the upper flute of the steel deck assembly; they may be installed anywhere across upper flute as follows:

(Figure A) - Placed over the upper flute with threaded bolt installed through the upper flute or; (Figure B) - Placed over the upper flute spanning the lower flute with threaded bolt installed through the inclined section or;

(Figure C) - Placed over the upper flute spanning the lower flute with threaded bolt installed through the lower flute.

- Inserts over the upper flute with threaded bolt installed through the upper flute may be placed in any location and orientation that meets the minimum deck end distance requirements (see Design Information Table). The minimum deck end distance is measured from deck end to the centerline of the insert bolt.
- 4. Inserts over the upper flute spanning the lower flute with threaded bolt installed through the inclined section may be placed in any location and orientation that meets the minimum deck end distance requirements (see Design Information Table). The minimum deck end distance is measured from deck end to the centerline of the insert bolt.
- 5. Inserts over the upper flute spanning the lower flute with threaded bolt installed through the lower flute may be placed in any location that meets the minimum deck end distance and minimum lower flute edge distance requirements. The minimum deck end distance is measured from deck end to the centerline of the insert bolt. For lower flute widths of 3-7/8-inch, a maximum 1-inch centerline bolt offset in either direction from the center of the flute. The offset distance may be increased for flute widths greater than those shown provided the minimum lower flute edge distance of 15/16 -inch is also satisfied.

TECHNICAL GUIDE - MECHANICAL ANCHORS © 2022 DEWALT - REV. E

PERFORMANCE DATA (ASD)

Ultimate and Allowable Load Capacities for DDI+ (Deck Insert) Installed in the Soffit of Sand-lightweight or Normal Weight Concrete over Metal Deck Floor and Roof Assemblies^{1,2,3,4,5,6}

					Normal-weight or Sand-lightweight concrete, f'c \geq 3,000 psi												
Nominal	Nominal	Min.	Min.	Min.		3-7/8" or 4-1/2" Wide Deck											
Anchor	Embed. Depth	Concrete Insert	Embed. Concrete Insert		End	Inst	Installed Over Upper Flute				Installed Over Flute Incline				Installed Over Lower Flute		
Diameter in.	hnom	Thickness	Spacing in.	Distance	Ultimat	te Load	Allowat	le Load	Ultimat	te Load	Allowat	ole Load	Ultimat	te Load	Allowab	le Load	
	ın.	IN.			Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	
					ID2.	in2'	ID2.	ID2.	ID2.	ins.	ID2.	ine.	105.	ID2.	in2'	in2'	
3/8	1-3/4	2	4-1/2	6	3,420	1,985	1,140	660	5,230	1,985	1,745	660	5,230	2,610	1,745	870	
1/2	2	2-1/2	5-1/4	7	4,310	4,205	1,435	1,400	6,235	4,205	2,080	1,400	6,235	5,155	2,080	1,720	
5/8	2-3/8	3	6	8	5,265	6,450	1,755	2,150	8,630	6,450	2,875	2,150	8,630	6,820	2,875	2,275	
3/4	2-5/8	3-1/4	6-3/8	8-3/4	5,770	6,450	1,925	2,150	8,630	6,450	2,875	2,150	8,630	6,820	2,875	2,275	
7/8	2-5/8	3-1/4	6-3/8	8-3/4	5,770	6,450	1,925	2,150	8,630	6,450	2,875	2,150	8,630	6,820	2,875	2,275	

1. Tabulated ultimate load values are for anchor inserts installed in uncracked concrete.

2. Allowable load capacities listed are calculated using an applied safety factor of 3.0

3. Nominal embedment depth is measured from the bottom of the insert plate to the top of the insert bolt head.

4. Insert spacing and end distances are measured from the centerline of the insert bolt head.

5. Shear loads may be applied in any direction.

6. For inserts installed over the upper flute and where shear loads act parallel to the flute, the tabulated allowable load valuesmay be increased by 20 percent (multiplied by 1.2).

UL Listings and FM Approvals for Supporting Fire Protection Services & Automatic Sprinkler Systems

Listing / Approval	DDI+ Threaded Concrete Inserts									
Listing / Approva	3/8-inch	1/2-inch	5/8-inch	3/4-inch	7/8-inch					
UL Max. Pipe Size	4"	8"	12"	12"	12"					
FM Max. Pipe Size	4"	8"	12"	12"	-					
Underwriters Laboratories (UL Listed) – File No. EX1289 and VFXT7.EX1289										
FM Approvals (Factory Mutual)										

MECHANICAL ANCHORS

STRENGTH DESIGN INFORMATION

DDI+ Insert Design I	nformation ^{1,2,3,4,5,6}				CODE LIS ICC-ES ESR-3	TED 3958	
	esign Information	Symbol	Units	3/8-inch	1/2-inch	5/8-inch	
Insert O.D. (nominal bolt dia	neter)	da	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	
Insert head net bearing area	A _{brg}	in² (mm²)	0.17 (110)	0.28 (181)	0.45 (290)		
Effective tensile stress area	Ase	in.² (mm²)	0.078 (50)	0.142 (92)	0.226 (146)		
	Over upper flute	h _{ef} (upperflute)	in	1.50	1 75	0.00	
Effective embedment depth	Over flute incline	hef (fluteincline)	(mm)	(38)	1.75	2.00 (51)	
	Over lower flute	hef (lowerflute)	()	()	(1-5)	()	
Minimum concrete member	h _{min}	in. (mm)	2.00 (51)	2.50 (64)	3.25 (83)		
Minimum spacing and edge	Smin, Cmin	in. (mm)	See Insta	Illation Information Figures A, B and C	Table and		
Effectiveness factor for crack	ss factor for cracked concrete kc(SI)(SI) (10)				24 (10)	24 10)	
Modification factor for tensio	n strength in uncracked concrete	$\Psi_{C,N}$	-		1.25		
According to	Nominal tension strength of single insert as governed by steel strength	Nsa,insert	lb (kN)	4,650	8,520	13,560	
Figures A, B or C	Nominal tension strength of single insert as governed by steel strength, seismic	Nsa,insert,eq	lb (kN)	(20.7)	(37.9)	(60.3)	
According to Figure A	Nominal steel shear strength of single insert in the soffit of concrete on steel deck	V _{sa,insert,deck} (upperflute)	lb (kN)	2,280 (10.1)	4,260 (18.9)	7,245	
(over upper flute)	Nominal steel shear strength of single insert in the soffit of concrete on steel deck, seismic	Vsa,insert,deck,eq (upperflute)	lb (kN)	1,825 (8.1)	3,410 (15.2)	(32.2)	
According to Figure B	Nominal steel shear strength of single insert in the soffit of concrete on steel deck	Vsa,insert,deck (fluteincline)	lb (KN)	1,310 (5.8)	3,410 (15.2)	5,240	
(over flute incline)	Nominal steel shear strength of single insert in the soffit of concrete on steel deck, seismic	V _{sa,insert,deck,eq} (fluteincline)	lb (kN)	1,045 (4.6)	2,860 (12.7)) (23.3)	
According to Figure C	Nominal steel shear strength of single insert in the soffit of concrete on steel deck	V _{sa,insert,deck} (lowerflute)	lb (kN)	2,280 (10.1)	4,260 (18.9)	5,735	
(over lower flute)	Nominal steel shear strength of single insert in the soffit of concrete on steel deck, seismic	V _{sa,insert,deck,eq} (lowerflute)	lb (kN)	2,015 (9.0)	3,410 (15.2)	(25.5)	

For SI: 1 inch = 25.4 mm, 1 pound = 4.45 N, 1 psi = 0.006895 MPa. For pound-inch unit: 1 mm = 0.03937 inches.

1. Concrete must have a compressive strength f 'c of 3,000 psi (20.7 MPa) minimum.

 Design of headed cast-in specialty inserts shall be in accordance with the provisions of ACI 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D, as applicable, for cast-in headed anchors. Concrete breakout strength must also be in accordance with the Idealization of Concrete Filled Steel Decks Figure.

3. Strength reduction factors for the inserts shall be taken from ACI 318-19 Section 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for cast-in headed anchors. Strength reduction factors for load combinations in accordance with ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, governed by steel strength of the insert shall be taken as 0.75 for tension and 0.65 for shear; values correspond to ductile steel elements. The value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 Section 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4.

4. Insert O.D. is the nominal bolt diameter of the insert.

5. Minimum spacing distance between anchors and minimum edge distances for cast-in headed DDI+ inserts shall be in accordance with the Installation Information Table, Design Information Table, Figures A, B and C and noted provisions.

6. Shear loads for concrete inserts in concrete-filled steel deck assemblies may be applied in any direction (i.e. over upper flute, over flute incline, over lower flute).

Idealization of Steel Deck Profile (over lower flute or over flute incline)

Idealization of Steel Deck Profile (over upper flute)

Idealization of Concrete Filled Steel Decks for Determination of Concrete Breakout Strength in Accordance with ACI 318

DESIGN STRENGTH TABLES (SD)

Tension and Shear Design Strengths for DDI+ Inserts Installed in Uncracked Lightweight Concrete Filled Steel Deck Floor and Roof Assemblies^{1,2,3,4,5,6}

		Minimum Concrete Compressive Strength							
		f'c = 3,000 psi							
Insert O.D. Embed. (Nominal Bolt Depth Diameter) her		Upper (Figu	r Flute ıre A)	Flute (Figu	Incline Ire B)	Lower Flute (Figure C)			
(in.)	(in.)	ØNn Tension (lbs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (Ibs.)	∲Vn Shear (Ibs.)	ϕ Nn Tension (Ibs.)	∲Vn Shear (lbs.)		
3/8	1-3/4	1,795	1,480	1,795	850	1,795	1,480		
1/2	1-3/4	2,265	2,770	2,265	2,215	2,265	2,770		
5/8	1-3/4	2,765	4,710	2,765	3,405	2,765	3,730		

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tension and Shear Design Strengths for DDI+ Inserts Installed in Cracked Lightweight Concrete Filled Steel Deck Floor and Roof Assemblies^{1,2,3,4,5,6,7}

		Minimum Concrete Compressive Strength									
	Fort of		f'c = 3,000 psi								
(Nominal Bolt Diameter)	Embed. Depth hef	Upper (Figu	Upper Flute (Figure A)		ncline re B)	Lower Flute (Figure C)					
(in.)	(in.)	∲Nn Tension (lbs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (Ibs.)	ØVn Shear (Ibs.)	ϕ Nn Tension (Ibs.)	∲Vn Shear (Ibs.)				
3/8	1-3/4	1,435	1,480	1,435	850	1,435	1,480				
1/2	1-3/4	1,810	2,770	1,810	2,215	1,810	2,770				
5/8	1-3/4	2,210	4,710	2,210	3,405	2,210	3,730				
- Anchor Pullout/Prv	out Strength Controls 🔲	- Concrete Breakout Stre	nath Controls 🔲 - Steel	Strength Controls							

Tabular values are provided for illustration and are applicable for single anchors installed in sand-lightweight concrete with minimum member thickness (topping 1thickness), $h_a = h_{min}$, and with the following conditions:

- For Upper Flute and Flute Incline: ca1 is greater than or equal to the critical edge distance, cac

- For Lower Flute: Ca1 is equal to the minimum lower flute edge distance

- Calculations were performed following methodology in ACI 318 (-19 or -14) Chapter 17. The load level corresponding to the controlling failure mode listed (e.g. 2-For Tension: steel strength, concrete breakout strength, or pullout strength; For Shear: steel strength). Furthermore, the capacities for concrete breakout strength in tension are calculated using the effective embedment values, her, for the selected anchors as noted in the design information table. Please also reference the installation specifications for additional information.
- Strength reduction factors (ø) for the inserts are based on ACI 318-19 17.5.3, ACI 318-14 17.3.3 for cast-in headed anchors. Condition B is assumed. Strength 3reduction factors for load combinations in accordance with ACI 318 (-19 and -14) Section 5.3 governed by steel strength of the insert are taken as 0.75 for tension and 0.65 for shear; values correspond to ductile steel elements.
- 4-Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5-For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Chapter 17.
- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Chapter 17 6and information contained in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Chapter 17.
- 7- For seismic design in accordance with ACI 318, the tabulated tension design strengths for concrete breakout and pullout must be multiplied by a factor of 0.75.

Tension and Shear Design Strengths for DDI+ Inserts Installed in Uncracked Normal-Weight Concrete Filled Steel Deck and Roof Assemblies^{1,2,3,4,5,6}

		Minimum Concrete Compressive Strength f'c = 3,000 psi							
lucest 0.D	Furbad								
(Nominal Bolt Diameter)	Insert O.D. Embed. (Nominal Bolt Depth Diameter) het		Upper Flute (Figure A)		Incline ıre B)	Lower Flute (Figure C)			
(in.)	(in.)	∲Nn Tension (lbs.)	∲Vn Shear (lbs.)	∲Nn Tension (lbs.)	∲Vn Shear (lbs.)	∲Nn Tension (lbs.)	∲Vn Shear (lbs.)		
3/8	1-1/2	2,115	1,480	2,115	850	2,115	1,480		
1/2	1-3/4	2,665	2,770	2,665	2,215	2,665	2,770		
5/8	2	3,255	3,255 4,710 3,255 3,405 3,255 3,730						
- Anchor Pullout/Pry	out Strength Controls 🔲	- Concrete Breakout Stre	nath Controls 🗖 - Steel	Strength Controls					

🗖 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tension and Shear Design Strengths for DDI+ Inserts Installed in Cracked Normal-Weight Concrete Filled Steel Deck and Roof Assemblies^{1,2,3,4,5,6,7}

		Minimum Concrete Compressive Strength							
	E. Lat		f'c = 3,000 psi						
Insert U.D. (Nominal Bolt Diameter)	Embed. Depth hef	Upper Flute (Figure A)		Flute I (Figu	Incline Ire B)	Lower Flute (Figure C)			
(in.)	(in.)	ØNn Tension (lbs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (lbs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (lbs.)	∲Vn Shear (lbs.)		
3/8	1-1/2	1,690	1,480	1,690	850	1,690	1,480		
1/2	1-3/4	2,130	2,770	2,130	2,215	2,130	2,770		
5/8	2	2,605	4,710	2,605	3,405	2,605	3,730		
Anobor Dullout/Dout	out Ctrongth Controlo	Caparata Draakout Ctra	nath Controla 🔲 Ctool	Ctrongth Controlo					

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum member thickness (topping thickness), $h_a = h_{min}$, and with the following conditions:

- For Upper Flute and Flute Incline: ca1 is greater than or equal to the critical edge distance, cac

- For Lower Flute: ca1 is equal to the minimum lower flute edge distance

- 2- Calculations were performed following methodology in ACI 318 (-19 or -14) Chapter 17. The load level corresponding to the controlling failure mode listed (e.g. For Tension: steel strength, concrete breakout strength, or pullout strength; For Shear: steel strength). Furthermore, the capacities for concrete breakout strength in tension are calculated using the effective embedment values, h_{ef}, for the selected anchors as noted in the design information table. Please also reference the installation specifications for additional information.
- 3- Strength reduction factors (ø) for the inserts are based on ACI 318-19 17.5.3, ACI 318-14 17.3.3 for cast-in headed anchors. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318 (-19 and -14) Section 5.3 governed by steel strength of the insert are taken as 0.75 for tension and 0.65 for shear; values correspond to ductile steel elements.
- 4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Chapter 17.
- 6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Chapter 17 and information contained in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Chapter 17.
- 7- For seismic design in accordance with ACI 318, the tabulated tension design strengths for concrete breakout and pullout must be multiplied by a factor of 0.75.

ORDERING INFORMATION

DDI+ (Deck Insert)

Cat. No.	Anchor Size	Rod/Anchor Dia.	Pack Qty.
PFM2511100	3/8" Metal Deck Insert	3/8"	20
PFM2511110	1/2" Metal Deck Insert	1/2"	20
PFM2511120	5/8" Metal Deck Insert	5/8"	20
PFM2511130	3/4" Metal Deck Insert	3/4"	12
PFM2511140	7/8" Metal Deck Insert	7/8"	12

DDI+ Installation Tools

Cat.No.	Description	Pack Qty.
DCD996P2	20V Max XR Lithium Ion Cordless Drill Driver Kit (5.0Ah)	1
PFM3611000	Deck Driller Extension 28" (Use with 1/2" Drill Driver)	1

Push-In Thread Couplers

Cat. No.	Description	Internal Thread Diameter	Pack Qty.
PFM3613038	3/8"-16 Coupler Push-In	3/8" to 3/8"	20
PFM3613012	1/2"-13 Coupler Push-In	1/2" to 1/2"	20

Push-In couplers have one end that does not require turning threaded rod elements during installation which can be ideal for applications such as mounting prefabricated hardware and hanger assemblies.

