

HILTI ANCHOR ROD SPECIFICATIONS AND TECHNICAL DATA

Standard pre-cut anchor rods and extended anchor rod program

As global leaders in chemical anchoring systems, Hilti has provided threaded rod for anchoring applications in materials such as concrete and masonry for many years.

We offer a broad portfolio of high quality pre-cut and custom cut-to-length Hilti anchor rods in thread diameters up to 2 ½ inches that in conjunction with the Hilti injectable mortars and adhesive capsules provide more reliable and higher performing fastening points, and help enable the installer to complete chemical anchoring applications more efficiently, hassle-free, without compromising the budget.

SAFE

For use with Hilti HIT-HY 200 V3 injectable mortar, the Hilti HIT-Z anchor rod provides better safety and load capacity combined with up to 60% faster installation due to zero-cleaning SafeSet Technology*.

* Zero-cleaning with SafeSet Technology with the Hilti HIT-Z anchor rod is currently for use at a base material temperature above 41 °F (+5 °C). For use below 41 °F (+5 °C) and for full installation procedures refer to the product instructions for use on the product packaging or contact Hilti.

Hilti HAS Anchor rod

Broad portfolio of eight different material and coating types including high-strength, hot-dipped galvanized, and stainless steel for the demand of increased performance and usability with capsule systems.

New enhanced carbon steel HAS rod program

All carbon steel HAS rods now meet the requirements of the ASTM F1554, which allows engineers to design ductile fastening points with predictable steel failure for seismic applications in the three most common and relevant steel grades 36, 55 and 105.

The indication of the steel grade in the head marking and the product name simplifies the selection and identification of the right anchor rods. Included matching high quality nuts and washers will help the installer get the job done quickly, efficiently, and correctly.

HAS AND HIT-Z ANCHOR RODS

The following technical data is for HAS threaded rods and HIT-Z anchor rods available in the standard pre-cut rod program and the extended rod program.

Specifications and physical properties of Hilti HAS threaded rods and Hilti HIT-Z anchor rods

	Threaded Rod Specification	Units		Ultimate ngth, tta max. ⁵	Minimum Specified Yield Strength 0.2% Offset, f _{ya}	f _{uta} / f _{ya}	Elongation, Min. %	Reduction of Area, Min. %	Specification for Nuts and Washers
	HAS-V-36 / HAS-V-36 HDG ASTM F1554, Grade 36 1.2.8	psi (MPa)	58,000 (400)	80,000 (552)	36,000 (248)	1.61	23	40	Nuts: ASTM A194/194M, Grade 2H, Heavy or ASTM A563-15 Grade A Heavy Hex (zinc/HDG)
CARBON STEEL	HAS-E-55 / HAS-E-55 HDG ASTM F1554, Grade 55 1.2.8	psi (MPa)	75,000 (517)	95,000 (655)	55,000 (379)	1.36	21	30 (3/8" - 2") 22 (2-1/4" - 2-1/2")	or ASTM A563-15 Grade A Hex (zinc) or A563-15 Grade C Hex (HDG) Washers: ASTM F436 Type 1
CAR	HAS-B-105 / HAS-B-105 HDG ASTM A193, Grade B7 ^{1,3} ASTM F1554, Grade 105 ^{1,2,8}	psi (MPa)	125,000 ⁽⁶⁾ (862) ⁽⁶⁾	150,000 (1,034)	105,000 (724)	1.19	16 (B7) 15 (Gr. 105)	50 (B7) 45 (Gr. 105)	Nuts: ASTM A194/194M, Grade 2H, Heavy or ASTM A563-15 Grade C Hex Washers: ASTM F436 Type 1
	HIT-Z Anchor rod (HIT-HY 200 V3 only) Unalloyed carbon steel ¹	psi (MPa)	94,200 (650)	NA	75,300 (519)	1.25	8	20	Nuts: ASTM A563 Gr. A Washers: ASTM F844, HV and ANSI B18.22.1 Type A Plain
	HAS-R 304 / 316 3/8-in. to 5/8-in. AISI Type 304 / 316 ASTM F 593 CW1 ⁴	psi (MPa)	100,000 (690)	150,000 (1,034)	65,000 (448)	1.54	20	-	
SS STEEL	HAS-R 304 / 316 3/4-in. to 1-in. AISI Type 304 / 316 ASTM F 593 CW2 ⁴	psi (MPa)	85,000 (586)	140,000 (966)	45,000 (310)	1.89	25	-	Nuts: ASTM F594
STAINLESS STEEL	HAS-R 304 / 316 1/4-in. and 1-1/8-in. to 2-in. ASTM A193 Grade 8(M), Class 1 ³	psi (MPa)	75,000 ⁽⁷⁾ (517) ⁽⁷⁾	NA	30,000 (207)	2.50 ⁽⁷⁾	30	50	Washers: ASTM A240 and ANSI B18.22.1 Type A Plain
	HIT-Z-R Anchor rod (HIT-HY 200 V3 only) Grade 316	psi (MPa)	94,200 (650)	NA	75,300 (519)	1.25	8	20	

All carbon steel threaded rods are zinc plated in accordance with ASTM F1941 Fe/Zn 5 AN, with nuts and washers zinc plated in accordance with ASTM B633 SC 1 Type III.
 All hot-dipped galvanized threaded rods, nuts, and washers are zinc plated in accordance with ASTM F2329.
 Standard Specification for Anchor Bolts, Steel, 36, 55, and 105-ksi Yield Strength.

Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service.

<sup>Standard Steel Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs.

Maximum specified steel strength according to ASTM standard. NA indicates that ASTM standard does not publish a maximum value.

For designs according to CSA A23.3-14 Annex D, the maximum value of f_{ing} is 860 MPa (124,700 psi) per clause D.6.1.2.

For calculating steel strength, ACI 318-14 section 17.4.1.2 and CSA A23.3-14 clause CIs. 2 limit the ultimate strength to 1.9 f_{ya}.

Thus, f_{ing} = 57,000 psi (393 MPa) for calculation purposes when determining steel strength in tension (N_y).

3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical</sup> property requirements of ASTM F1554.

STRENGTH DESIGN ACCORDING TO ACI 318

The following steel design information is for Hilti HAS threaded rods and HIT-Z anchor rods according to the material specifications on page 2, used in conjunction with Hilti adhesive anchors designed in accordance with ACI 318 Chapter 17. This includes Hilti HIT-HY 200 V3, HIT-RE 500 V3, HIT-RE 100, HIT-HY 100, and HIT-ICE.

Steel design information for Hilti HAS threaded rods and Hilti HIT-Z anchor rods for use with ACI 318 Chapter 17

Design Informa	ation	Symbol	Units		N	lominal Rod	Diameter (ir	า.)	
		Cymbol	OTINO	3/8	1/2	5/8	3/4	7/8	1
Rod O.D.		d	in.	0.375	0.5	0.625	0.75	0.875	1
Rod effective c	ross-sectional area	A _{se}	in. ²	0.0775	0.1419	0.2260	0.3345	0.4617	0.6057
	1		(mm²) Ib	(50) 4,495	(92) 8,230	(146) 13,110	(216) 19,400	(298) 26,780	(391)
7. 0 4.		N_{sa}	(kN)	(20.0)	(36.6)		(86.3)		(156.3)
6 HDG ir. 3	Nominal strength as governed by steel strength		(KIN)	 	<u> </u>	(58.3)	<u> </u>	(119.1)	<u> </u>
.V-3 36 F 54 G		V_{sa}		2,695	4,940	7,865	11,640	16,070	21,080
HAS-V-36 HAS-V-36 HDG ASTM F1554 Gr. 36 ^{1,4}	Deduction factor exists about		(kN) -	(12.0)	(22.0)	(35.0)	(51.8)	(71.5)	(93.8)
H AS	Reduction factor, seismic shear	α _{v,seis}					.6		
AST	Strength reduction factor Φ for tension ²	Ф	-				75		-
	Strength reduction factor Φ for shear ²	Ф	- 11-	5.045	10.045		65	0.4.000	45 400
7,4		N_{sa}	lb (LN)	5,815	10,645	16,950	25,090	34,630	45,430
5 FC 55	Nominal strength as governed by steel strength		(kN)	(25.9)	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)
F-55 7 G F		V_{sa}	lb (LN)	3,490	6,385	10,170	15,055	20,780	27,260
HAS-E-55 .S-E-55 HC F1554 Gr.			(kN)	(15.5)	(28.4)	(45.2)	(67.0)	(92.4)	(121.3)
HAS-E-55 HAS-E-55 HDG ASTM F1554 Gr. 55 14	Reduction factor, seismic shear	α _{v,seis}	-				7 (3)		
TS/	Strength reduction factor Φ for tension ²	Ф	-				75		
	Strength reduction factor Φ for shear ²	Ф	-		1		65	I	
1d 5. 4		N _{sa}	lb	9,690	17,740	28,250	41,815	57,715	75,715
5 HDG 7 an 10	Nominal strength as governed by steel strength	sa	(kN)	(43.1)	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)
-10 -10 -10 -10 -10 -10 -10 -10 -10 -10		V_{sa}	lb	5,815	10,645	16,950	25,090	34,630	45,430
HAS-B-105 (S-B-105 HE IM A193 B7 F1554 Gr. 1			(kN)	(25.9)	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)
HAS-B-105 HAS-B-105 HDG ASTM A193 B7 and ASTM F1554 Gr. 105 14	Reduction factor, seismic shear	α _{v,seis}	-				7 (3)		
H, ASI	Strength reduction factor Φ for tension ²	Ф	-	ļ			75		
<u> </u>	Strength reduction factor Φ for shear ²	Ф	-	<u> </u>	1	0.	65		
90		N _{sa}	lb	7,750	14,190	22,600	28,435	39,245	51,485
S St.	Nominal strength as governed by steel strength	sa .	(kN)	(34.5)	(63.1)	(100.5)	(126.5)	(174.6)	(229.0)
less 33, 1	Tromman on origin as governed by stock strongth	V_{sa}	lb	4,650	8,515	13,560	17,060	23,545	30,890
3 Stainless FM F593, o Stainless		* sa	(kN)	(20.7)	(37.9)	(60.3)	(75.9)	(104.7)	(137.4)
HAS-R Stainless Steel ASTM F593, CW Stainless ¹	Reduction factor, seismic shear	α _{v,seis}	-			0.	7 (3)		
AS- AS	Strength reduction factor Φ for tension ²	Ф	-			0.	65		
	Strength reduction factor Φ for shear ²	Ф	-			0.	60		
- 5		N	lb	7,305	13,375	21,305	31,470	-	-
pod	Nominal strength as governed by steel strength	N _{sa}	(kN)	(32.5)	(59.5)	(94.8)	(140.0)	-	-
HIT-Z Anchor Rod ¹ (HIT-HY 200 V3 only)	Norminal strength as governed by steel strength	V	lb	3,215	5,885	9,375	13,850	-	-
1chr		V _{sa}	(kN)	(14.3)	(26.2)	(41.7)	(61.6)	-	-
Ā ¥ Z ¥	Reduction factor, seismic shear	$\alpha_{\rm v,seis}$	-	1.00		0.65			-
真草	Strength reduction factor Φ for tension ²	Ф	-		0.	65			-
<u> </u>	Strength reduction factor Φ for shear ²	Φ	-		0.	60			-
			lb	7,305	13,375	21,305	31,472	-	-
Roc only	L	N _{sa}	(kN)	(32.5)	(59.5)	(94.8)	(140.0)	-	-
HIT-Z-R Anchor Rod (HIT-HY 200 V3 only) Stainless Steel	Nominal strength as governed by steel strength		lb	4,385	8,025	12,785	18,885	-	-
Ancl .00 ' .ss &		V _{sa}	(kN)	(19.5)	(35.7)	(56.9)	(84.0)	_	_
-R	Reduction factor, seismic shear	α _{v,seis}	` - ´	1.00	0.75	<u> </u>	65		-
T-Z T-F Sta	Strength reduction factor Φ for tension ²	φ	_						_
로프	Strength reduction factor Φ for shear ²	Φ		0.65 - 0.60 -					

¹ Values provided for Hilti threaded rod materials based on published strengths and calculated in accordance with ACI 318-14 Chapter 17 Eq. 17.4.1.2 and Eq. 17.5.1.2b. Nuts and washers must be appropriate for rod strength.

² For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3, or ACI 318-11 D.4.3, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318

Appendix C are used, the appropriate value of Φ must be determined in accordance with ACI 318 D.4.4.

3 For HIT-RE 500 V3, the value of α_{vasis} can be increased. Refer to ICC-ES ESR-3814 or contact Hilti.

4 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

STRENGTH DESIGN ACCORDING TO ACI 318

The following steel design information is for Hilti HAS threaded rods according to the material specifications on page 2, used in conjunction with Hilti adhesive anchors designed in accordance with ACI 318 Chapter 17. This includes Hilti HIT-HY 200 V3, HIT-RE 500 V3, HIT-RE 100, HIT-HY 100, and HIT-ICE.

Steel design information for Hilti HAS threaded rods for use with ACI 318 Chapter 17

Design Inforr	nation	Symbol	Units			Nomina	ıl Rod Diam	eter (in.)		
				1-1/8	1-1/4	1-1/2	1-3/4	2	2-1/4	2-1/2
Rod O.D.		d	in.	1.125	1.25	1.5	1.75	2	2.25	2.5
Rod effective	e cross-sectional area	A _{se}	in. ²	0.7633	0.9691	1.405	1.90	2.50	3.25	4.00
Tiod oncolive	T	'`se	(mm²)	(492)	(625)	(906)	(1,226)	(1,613)	(2,097)	(2,581)
		N _{ea}	lb	44,270	56,210	81,490	110,200	145,000	-	-
	Nominal strength as governed by steel strength	sa	(kN)	(196.9)	(250.0)	(362.5)	(490.2)	(645.0)	-	-
HAS-V-36 HAS-V-36 HDG ASTM F1554 Gr. 36 ¹	The same of the sa	V _{sa}	lb	26,560	33,725	48,895	66,120	87,000	-	-
/S-/ V-3 155		sa	(kN)	(118.1)	(150.0)	(217.5)	(294.1)	(387.0)	-	-
AS-AS-	Reduction factor, seismic shear	α _{v,seis}	-		0.6					-
H.ST	Strength reduction factor f for tension ²	ф	-	0.75					-	-
	Strength reduction factor f for shear ²	ф	-			0.65			-	-
10		N _{sa}	lb	57,250	72,685	105,375	142,500	187,500	-	-
0G . 55	Nominal strength as governed by steel strength	sa	(kN)	(254.7)	(323.3)	(468.7)	(633.9)	(834.0)	-	-
-55 H G	Norminal strength as governed by steel strength	\ \	lb	34,350	43,610	63,225	85,500	112,500	-	-
S-E =-55 155		V _{sa}	(kN)	(152.8)	(194.0)	(281.2)	(380.3)	(500.4)	-	-
HAS-E-55 HAS-E-55 HDG ASTM F1554 Gr. 55 ¹	Reduction factor, seismic shear	α _{v,seis}	-			0.7 (3)			-	-
H ST	Strength reduction factor f for tension ²	ф	-	0.75					-	-
	Strength reduction factor f for shear ²	ф	-	0.65				-	-	
T 10		N.	lb	95,415	121,140	175,625	237,500	312,500	406,250	500,000
ang ang 100	Nominal strength as governed by steel strength	N_{sa}	(kN)	(424.4)	(538.9)	(781.2)	(1,056.4)	(1,390.1)	(1,807.1)	(2,224.1)
105 5 HI B7 Gr.	Norminal strength as governed by steel strength	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	lb	57,250	72,685	105,375	142,500	187,500	243,750	300,000
3-B- -10 193 554		V _{sa}	(kN)	(254.7)	(323.3)	(468.7)	(633.9)	(834.0)	(1,084.2)	(1,334.5)
HAS-B-105 HAS-B-105 HDG ASTM A193 B7 and ASTM F1554 Gr. 105 ¹	Reduction factor, seismic shear	α _{v,seis}	-				0.7 (3)			
HA AST STA	Strength reduction factor f for tension ²	ф	-				0.75		,	
	Strength reduction factor f for shear ²	ф	-				0.65			
, <u>e</u>		NI.	lb	43,510	55,240	80,085	108,300	142,500	-	-
Ste 8(N	Naminal attendate as any arrand by stable transite	N_{sa}	(kN)	(193.5)	(245.7)	(356.2)	(481.7)	(633.9)	-	-
ess Gr. 1 ¹	Nominal strength as governed by steel strength	V	lb	26,105	33,145	48,050	64,980	85,500	-	-
ainl 93,		V _{sa}	(kN)	(116.1)	(147.4)	(213.7)	(289.0)	(380.3)		
HAS-R Stainless Steel ASTM A193, Gr. 8(M), Class 11	Reduction factor, seismic shear	α _{v,seis}	-			0.6			-	-
AS-F STN	Strength reduction factor f for tension ²	ф	-			0.75			-	-
žΫ	Strength reduction factor f for shear ²	ф	-	0.65				-		

Values provided for Hilti threaded rod materials based on published strengths and calculated in accordance with ACI 318-14 Chapter 17 Eq. 17.4.1.2 and Eq. 17.5.1.2b. Nuts and washers must be appropriate for rod strength.
 For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3, or ACI 318-11 D.4.3, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318 Appendix

January 2025 5

² For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3, or ACI 318-11 D.4.3, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4.

 $^{^3}$ For HIT-RE 500 V3, the value of $\alpha_{_{V,sels}}$ can be increased. Refer to ICC-ES ESR-3814 or contact Hilti.

STRENGTH DESIGN ACCORDING TO ACI 318

The following are strength design values calculated from data on the previous pages. This is intended for adhesive anchors designed in accordance with ACI 318-14 Chapter 17 (and Appendix D for earlier editions of ACI 318) and can be used in conjunction with the Hilti Simplified Strength Design Tables (refer to Section 3.1.8 of the 2016 and 2017 Hilti Anchor Fastening Technical Guide for more information on the Hilti Simplified Tables). This includes Hilti HIT-HY 200 V3, HIT-RE 500 V3, HIT-RE 100, HIT-HY 100, and HIT-ICE.

Steel design strength for Hilti HAS threaded rods for use with ACI 318-14 Chapter 17

	HAS-V-36 / HAS-V-36 HDG ASTM F1554 Gr. 36 4.6 HAS-E-55 / HAS-E-55 HDG ASTM F1554 Gr. 35 4.5.6 HAS-B-105 / HAS-B-105 HDG ASTM A193 B7 and ASTM F 1554 Gr. 105 4.6		and	ASTM	-R Stainless F593 (3/8-in t 193 (1-1/8-in	o 1-in) ⁵						
Nominal anchor diameter in.	Tensile ¹ ΦN_{sa} Ib (kN)	Shear² ΦV_{sa} Ib (kN)	Seismic Shear ³ $\Phi V_{sa,eq}$ Ib (kN)	Tensile¹ ΦΝ _{sa} lb (kN)	Shear² ΦV _{sa} Ib (kN)	Seismic Shear³ $\Phi V_{_{SA,eq}}$ Ib (kN)	Tensile¹ ΦN _{sa} Ib (kN)	Shear² ΦV _{sa} lb (kN)	Seismic Shear ³ $\Phi V_{_{SA,eq}}$ Ib (kN)	Tensile¹ ΦN _{sa} lb (kN)	Shear² ΦV _{sa} Ib (kN)	Seismic Shear ³ $\Phi V_{_{\mathrm{sa,eq}}}$ Ib (kN)
3/8	3,370 (15.0)	1,750 (7.8)	1,050 (4.7)	4,360 (19.4)	2,270 (10.1)	1,590 (7.1)	7,270 (32.3)	3,780 (16.8)	2,645 (11.8)	5,040 (22.4)	2,790 (12.4)	1,955 (8.7)
1/2	6,175 (27.5)	3,210 (14.3)	1,925 (8.6)	7,985 (35.5)	4,150 (18.5)	2,905 (12.9)	13,305 (59.2)	6,920 (30.8)	4,845 (21.6)	9,225 (41.0)	5,110 (22.7)	3,575 (15.9)
5/8	9,835 (43.7)	5,110 (22.7)	3,065 (13.6)	12,715 (56.6)	6,610 (29.4)	4,625 (20.6)	21,190 (94.3)	11,020 (49.0)	7,715 (34.3)	14,690 (65.3)	8,135 (36.2)	5,695 (25.3)
3/4	14,550 (64.7)	7,565 (33.7)	4,540 (20.2)	18,820 (83.7)	9,785 (43.5)	6,850 (30.5)	31,360 (139.5)	16,310 (72.6)	11,415 (50.8)	18,485 (82.2)	10,235 (45.5)	7,165 (31.9)
7/8	20,085 (89.3)	10,445 (46.5)	6,265 (27.9)	25,975 (115.5)	13,505 (60.1)	9,455 (42.1)	43,285 (192.5)	22,510 (100.1)	15,755 (70.1)	25,510 (113.5)	14,125 (62.8)	9,890 (44.0)
1	26,350 (117.2)	13,700 (60.9)	8,220 (36.6)	34,075 (151.6)	17,720 (78.8)	12,405 (55.2)	56,785 (252.6)	29,530 (131.4)	20,670 (91.9)	33,465 (148.9)	18,535 (82.4)	12,975 (57.7)
1-1/8	33,205 (147.7)	17,265 (76.8)	10,360 (46.1)	42,940 (191.0)	22,330 (99.3)	15,630 (69.5)	71,560 (318.3)	37,215 (165.5)	26,050 (115.9)	32,635 (145.2)	16,970 (75.5)	10,180 (45.3)
1-1/4	42,160 (187.5)	21,920 (97.5)	13,150 (58.5)	54,515 (242.5)	28,345 (126.1)	19,840 (88.3)	90,855 (404.1)	47,245 (210.2)	33,070 (147.1)	41,430 (184.3)	21,545 (95.8)	12,925 (57.5)
1-1/2	61,120 (271.9)	31,780 (141.4)	19,070 (84.8)	79,030 (351.5)	41,095 (182.8)	28,765 (128.0)	131,720 (585.9)	68,495 (304.7)	47,945 (213.3)	60,065 (267.2)	31,235 (138.9)	18,740 (83.4)
1-3/4	82,650 (367.6)	42,980 (191.2)	25,790 (114.7)	106,875 (475.4)	55,575 (247.2)	38,905 (173.1)	178,125 (792.3)	92,625 (412.0)	64,835 (288.4)	81,225 (361.3)	42,235 (187.9)	25,340 (112.7)
2	108,750 (483.7)	56,550 (251.5)	33,930 (150.9)	140,625 (625.5)	73,125	51,190 (227.7)	234,375 (1,042.5)	121,875 (542.1)	85,315 (379.5)	106,875	55,575 (247.2)	33,345 (148.3)
2-1/4		-	-	-	-		304,690 (1,355.3)	158,440 (704.8)	110,910 (493.3)	-	-	
2-1/2	-	-	-	- -	- -	-	375,000 (1,668.1)	195,000 (867.4)	136,500 (607.2)	-	- -	-

Steel design strength for Hilti HIT-Z anchor rods for use with ACI 318-14 Ch. 17

Nominal	(H	HIT-Z HIT-HY 200 V3 only)	4	(HIT-HY 2	HIT-Z-R 200 V3 only) Stainle	ess Steel ⁴
anchor diameter in.	Tensile ¹ $\Phi N_{_{\mathbb{S}^a}}$ Ib (kN)	Shear² ΦV _{sa} Ib (kN)	Seismic Shear³ $\Phi V_{_{Sa,eq}}$ Ib (kN)	Tensile¹ ΦN_{sa} Ib (kN)	Shear² $\Phi V_{_{\mathbb{S}^a}}$ Ib (kN)	Seismic Shear³ $\Phi V_{\rm sa,eq}$ Ib (kN)
3/8	4,750	1,930	1,930	4,750	2,630	2,630
3/0	(21.1)	(8.6)	(8.6)	(21.1)	(11.7)	(11.7)
1 /0	8,695	3,530	2,295	8,695	4,815	3,610
1/2	(38.7)	(15.7)	(10.2)	(38.7)	(21.4)	(16.1)
E /0	13,850	5,625	3,655	13,850	7,670	4,985
5/8	(61.6)	(25.0)	(16.3)	(61.6)	(34.1)	(22.2)
0./4	20,455	8,310	5,400	20,455	11,330	7,365
3/4	(91.0)	(37.0)	(24.0)	(91.0)	(50.4)	(32.8)

Tensile = ΦA_{son N} f_{un} as noted in ACI 318-14 17.4.1.2
 Shear = Φ 0.60 A_{son V} f_{un} as noted in ACI 318-14 17.5.1.2b.
 Seismic Shear = α_{Vasin} ΦV_{sin} . Reduction factor for seismic shear only. See ACI 318 for additional information on seismic applications. Seismic shear for HIT-RE 500 V3 may be increased for HAS-E, HAS-B, and HAS-R CV1 and CW2 threaded rods (including HDG rods). Refer to ESR-3814.
 HAS-V, HAS-E (3/8-in to 2-in), HAS-B, and HAS-R (Class 1; 1-1/8-in to 2-in) threaded rods are considered ductile steel elements (included HDG rods).

⁵ HAS-E (2-1/4-in to 2-1/2-in) and HAS-R (CW1 and CW2; 3/8-in to 1-in) threaded rods are considered brittle steel elements (including HDG rods).

^{6 3/8-}inch diá. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

¹ Tensile = $\Phi A_{seN} f_{uta}$ as noted in ACI 318-14 17.4.1.2 ² Shear value for HIT-Z and HIT-Z-R anchor rods is based on static shear testing with $\Phi V_{ss} \le \Phi$ 0.60 $A_{seV} f_{uta}$ as noted in ACI 318-14 17.5.1.2b. ³ Seismic Shear = $\alpha_{V_{smin}} \Phi V_{ss}$: Reduction factor for seismic shear only. See ACI 318 for additional information on seismic applications. Seismic shear for HIT-RE 500 V3 may be increased for HAS-R rods. Refer to ESR-3814.

⁴ HAS-R stainless steel threaded rods, HIT-Z, and HIT-Z-R anchor rods are considered brittle steel elements.

LIMIT STATES DESIGN ACCORDING TO CSA A23.3-14

The following steel design information is for Hilti HAS threaded rods and HIT-Z anchor rods according to the material specifications on page 2, used in conjunction with Hilti adhesive anchors designed in accordance with CSA A23.3-14 Annex D. This includes Hilti HIT-HY 200 V3, HIT-RE 500 V3, HIT-RE 100, HIT-HY 100, and HIT-ICE.

Steel design information for Hilti HAS threaded rods and Hilti HIT-Z anchor rods for use with CSA A23.3-14 Annex D

Design Information		Symbol	Units		٨	Iominal Rod	Diameter (in	า.)	
				3/8	1/2	5/8	3/4	7/8	1
Rod O.D.		d	in.	0.375	0.5	0.625	0.75	0.875	1
Rod effective cross	s-sectional area	A _{se}	in.² (mm²)	0.0775 (50)	0.1419 (92)	0.2260 (146)	0.3345 (216)	0.4617 (298)	0.6057 (391)
4.		N	lb	4,495	8,230	13,110	19,400	26,780	35,130
HAS-V-36 HAS-V-36 HDG ASTM F1554 Gr. 36 14	Nominal strength as governed by steel strength	N _{sa}	(kN)	(20.0)	(36.6)	(58.3)	(86.3)	(119.1)	(156.3)
7-36 6 HE 4 Gr	Thommal strongth as governed by steel strongth	V_{sa}	lb	2,695	4,940	7,865	11,640	16,070	21,080
HAS-V-36 S-V-36 HI F1554 Gr			(kN)	(12.0)	(22.0)	(35.0)	(51.8)	(71.5)	(93.8)
HAS-V-36 HAS-V-36 HDG TM F1554 Gr. 36	Reduction factor, seismic shear	α _{v,seis}	-	0.6					
H (STI	Strength reduction factor R for tension ²	R	-		,		80	,	
	Strength reduction factor R for shear ²	R	-			1	75		
4.		N _{sa}	lb	5,815	10,645	16,950	25,090	34,630	45,430
5 DG r. 55	Nominal strength as governed by steel strength	sa	(kN)	(25.9)	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)
E-56 15 H 14 G		V_{sa}	lb ""	3,490	6,385	10,170	15,055	20,780	27,260
HAS-E-55 \S-E-55 HI F1554 Gr			(kN)	(15.5) (28.4) (45.2) (67.0) (92.4) (121.3) 0.7 ⁽³⁾					(121.3)
HAS-E-55 HAS-E-55 HDG ASTM F1554 Gr. 55 ^{1,4}	Reduction factor, seismic shear	α _{v,seis}	-	-					
HAST	Strength reduction factor R for tension ²	R	-	-			80		
	Strength reduction factor R for shear ²	R		0.005	47.005	1	75	F7 F7F	75.500
رم ک ب		N _{sa}	lb (LN)	9,665	17,695	28,180	41,710	57,575	75,530
25 HDC 17 al 14 Gr	Nominal strength as governed by steel strength		(kN)	(43.0)	(78.7)	(125.4)	(185.5)	(256.1)	(336.0)
AS-B-10 -B-105 A193 B M F155		V _{sa}	lb ((AN)	5,800	10,615	16,910	25,025	34,545	45,320
HAS-B-105 \angle B-105 HE M A193 B7 STM F1554 (105 \text{14	Reduction factor, seismic shear		(kN) -	(25.8)	(47.2)	(75.2)	(111.3) 7 ⁽³⁾	(153.7)	(201.6)
HAS-B-105 HAS-B-105 HDG ASTM A193 B7 and ASTM F1554 Gr. 105 ¹⁴	Strength reduction factor R for tension ²	α _{v,seis} R	-	-			80		
1 8 1	Strength reduction factor R for shear ²	R	-		0.75				
	Offerigui reduction factor (110) shear	- 11	lb	7,750	14,190	22,600	28,435	39,245	51,485
stee ∧		N_{sa}	(kN)	(34.5)	(63.1)	(100.5)	(126.5)	(174.6)	(229.0)
. C) . S	Nominal strength as governed by steel strength		lb	4,650	8,515	13,560	17,060	23,545	30,890
ainle :593 nles		V_{sa}	(kN)	(20.7)	(37.9)	(60.3)	(75.9)	(104.7)	(137.4)
HAS-R Stainless Steel ASTM F593, CW Stainless¹	Reduction factor, seismic shear	α _{v,seis}	-	,	(/	. ,	7 (3)	(- ' /	
S-F AST	Strength reduction factor R for tension ²	v,seis R	-			0.	70		
Ŧ	Strength reduction factor R for shear ²	R	-				65		
		1	lb	7,305	13,375	21,305	31,470	-	-
Anchor Rod ¹ Y 200 V3 only)	l.,	N _{sa}	(kN)	(32.5)	(59.5)	(94.8)	(140.0)	-	-
or R	Nominal strength as governed by steel strength	.,	lb	3,215	5,885	9,375	13,850	-	-
200		V_{sa}	(kN)	(14.3)	(26.2)	(41.7)	(61.6)	-	-
Z Ar	Reduction factor, seismic shear	α _{v,seis}	-	1.00		0.65			
HIT-Z (HIT-H)	Strength reduction factor R for tension ²	R	-		0.	70		-	
_ = ÷	Strength reduction factor R for shear ²	R	-		0.	65		-	
¬ ¬		N	lb	7,305	13,375	21,305	31,470	-	-
HIT-Z-R Anchor Rod (HIT-HY 200 V3 only) Stainless Steel ¹	Nominal strength as governed by steel strength	N _{sa}	(kN)	(32.5)	(59.5)	(94.8)	(140.0)	-	-
	Transfer de governou by stool strongth	V_{sa}	lb	4,385	8,025	12,785	18,885	-	-
Anc 200 ess		v sa	(kN)	(19.5)	(35.7)	(56.9)	(84.0)	-	-
Z-R ·HY tainl	Reduction factor, seismic shear	α _{v,seis}	-	1.00	0.75	0.	65	-	
토토	Strength reduction factor R for tension ²	R	-	ļ		70		-	
	Strength reduction factor R for shear ²	R	-		0.	65		-	

Values provided for Hilti threaded rod materials based on published strengths and calculated in accordance with CSA A23.3-14 Annex D Eq. D.2 and Eq. D.31. Nuts and washers must be

Values provided for Hilt Inreaded fod materials based on published strengths and calculated in accordance with CSA A23.3-14 Annex D Eq. D.2 and Eq. D.31. Nots and wasners must be appropriate for rod strength.
 For use with the load combinations of CSA A23.3-14 Clause 8.
 For HIT-RE 500 V3, the value of α_{vasies} can be increased. Refer to ICC-ES ESR-3814 or contact Hilti.
 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

LIMIT STATES DESIGN ACCORDING TO CSA A23.3-14

The following steel design information is for Hilti HAS threaded rods according to the material specifications on page 2, used in conjunction with Hilti adhesive anchors designed in accordance with CSA A23.3-14 Annex D. This includes Hilti HIT-HY 200 V3, HIT-RE 500 V3, HIT-RE 100, HIT-HY 100, and HIT-ICE.

Steel design information for Hilti HAS threaded rods for use with CSA A23.3-14 Annex D

Design Inform	ation	Symbol	Units			Nomina	al Rod Diam	eter (in.)		
				1-1/8	1-1/4	1-1/2	1-3/4	2	2-1/4	2-1/2
Rod O.D.		d	in.	1.125	1.25	1.5	1.75	2	2.25	2.5
Rod effective	cross-sectional area	A _{se}	in. ² (mm ²)	0.7633 (492)	0.9691 (625)	1.405 (906)	1.90 (1,226)	2.50 (1,613)	3.25 (2,097)	4.00 (2,581)
_			lb	44,270	56,210	81,490	110,200	145,000	-	-
HAS-V-36 HAS-V-36 HDG ASTM F1554 Gr. 36 ¹	<u>.</u>	N _{sa}	(kN)	(196.9)	(250.0)	(362.5)	(490.2)	(645.0)	-	-
용 문 호	Nominal strength as governed by steel strength		lb	26,560	33,725	48,895	66,120	87,000	-	-
HAS-V-36 \S-V-36 HE 1 F1554 G		V _{sa}	(kN)	(118.1)	(150.0)	(217.5)	(294.1)	(387.0)	-	-
HAS (S-V 11 F1	Reduction factor, seismic shear	α _{v.seis}	-	0.6				-	-	
AH NTS	Strength reduction factor R for tension ²	R	-			0.80			-	-
⋖	Strength reduction factor R for shear ²	R	-			0.75			-	-
		N.	lb	57,250	72,685	105,375	142,500	187,500	-	-
. 55	Newsingletypeth as accorded by steel strongth	N_{sa}	(kN)	(254.7)	(323.3)	(468.7)	(633.9)	(834.0)	-	-
-55 HE 1 Gr	Nominal strength as governed by steel strength	V	lb	34,350	43,610	63,225	85,500	112,500	-	-
S-E 5-55 1554		V _{sa}	(kN)	(152.8)	(194.0)	(281.2)	(380.3)	(500.4)	-	-
HAS-E-55 HAS-E-55 HDG ASTM F1554 Gr. 55 ¹	Reduction factor, seismic shear	α _{v,seis}	-	0.7 (3)					-	-
H L	Strength reduction factor R for tension ²	R	-			0.80			-	-
	Strength reduction factor R for shear ²	R	-			0.75			-	-
70		N	lb	95,185	120,845	175,205	236,930	311,750	405,275	498,800
DG and	Nominal strength as governed by steel strength	N _{sa}	(kN)	(423.4)	(537.5)	(779.3)	(1,053.9)	(1,386.7)	(1,802.7)	(2,218.8)
HAS-B-105 S-B-105 HI M A193 B7 ASTM F155 ¹ Gr. 105 ¹	Normal strength as governed by steer strength	V _{sa}	lb	57,110	72,505	105,125	142,160	187,050	243,165	299,280
JAS-B-106 5-B-105 H 1 A193 B7 STM F155 Gr. 105 ¹		sa sa	(kN)	(254.0)	(322.5)	(467.6)	(632.4)	(832.0)	(1,081.6)	(1,331.3)
HAS-B-105 HAS-B-105 HDG ASTM A193 B7 and ASTM F1554 Gr. 105 ¹	Reduction factor, seismic shear	α _{v,seis}	-				0.7 (3)			
HA AST	Strength reduction factor R for tension ²	R	-				0.80			
	Strength reduction factor R for shear ²	R	-				0.75			
; <u>⊕</u>		N _{sa}	lb	43,510	55,240	80,085	108,300	142,500	-	-
Ste 8(N	Nominal strength as governed by steel strength	sa	(kN)	(193.5)	(245.7)	(356.2)	(481.7)	(633.9)	-	-
less 1-1-	Tronmar dronger as governed by steer stronger	V _{sa}	lb	26,105	33,145	48,050	64,980	85,500	-	-
Stainles: A193, Gr Class 11		* sa	(kN)	(116.1)	(147.4)	(213.7)	(289.0)	(380.3)	-	-
HAS-R Stainless Steel ASTM A193, Gr. 8(M), Class 1 ¹	Reduction factor, seismic shear	α _{v,seis}	-			0.6			-	-
AS-	Strength reduction factor R for tension ²	R	-			0.80			-	-
	Strength reduction factor R for shear ²	R	-	0.75				-	-	

¹ Values provided for Hilti threaded rod materials based on published strengths and calculated in accordance with CSA A23.3-14 Annex D Eq. D.2 and Eq. D.31. Nuts and washers must be appropriate for rod strength.

For use with the load combinations of CSA A23.3-14 Clause 8.
 For HIT-RE 500 V3, the value of α_{vasis} can be increased. Refer to ICC-ES ESR-3814 or contact Hilti.

LIMIT STATES DESIGN ACCORDING TO CSA A23.3-14

The following are strength design values calculated from data on the previous pages. This is intended for adhesive anchors designed in accordance with CSA A23.3-14 Annex D and can be used in conjunction with the Hilti Simplified Strength Design Tables (refer to Section 3.1.8 of the 2016 and 2017 Hilti Anchor Fastening Technical Guide for more information on the Hilti Simplified Tables). This includes Hilti HIT-HY 200 V3, HIT-RE 500 V3, HIT-RE 100, HIT-HY 100, and HIT-ICE.

Steel factored resistance for Hilti HAS threaded rods for use with CSA A23.3-14 Annex D

Nominal		-36 / HAS-V- M F1554 Gr.		HAS-E-55 / HAS-E-55 HDG ASTM F1554 Gr. 55 4.5.6			HAS-B-105 / HAS-B-105 HDG ASTM A193 B7 and ASTM F 1554 Gr. 105 46			HAS-R Stainless Steel ASTM F593 (3/8-in to 1-in) ⁵ ASTM A193 (1-1/8-in to 2-in) ⁴		
anchor diameter in.	Tensile ¹ N _{sar} Ib (kN)	Shear ² V _{sar} Ib (kN)	Seismic Shear ³ V _{sar,eq} Ib (kN)	Tensile ¹ N _{sar} Ib (kN)	Shear ² V _{sar} Ib (kN)	Seismic Shear ³ V _{sar,eq} Ib (kN)	Tensile ¹ N _{sar} Ib (kN)	Shear ² V _{sar} Ib (kN)	Seismic Shear³ V _{sar,eq} Ib (kN)	Tensile ¹ N _{sar} Ib (kN)	Shear ² V _{sar} Ib (kN)	Seismic Shear³ V _{sar,eq} Ib (kN)
3/8	3,055	1,720	1,030	3,955	2,225	1,560	6,570	3,695	2,585	4,610	2,570	1,800
	(13.6)	(7.7)	(4.6)	(17.6)	(9.9)	(6.9)	(29.2)	(16.4)	(11.5)	(20.5)	(11.4)	(8.0)
1/2	5,595	3,150	1,890	7,240	4,070	2,850	12,035	6,765	4,735	8,445	4,705	3,295
1/2	(24.9)	(14.0)	(8.4)	(32.2)	(18.1)	(12.7)	(53.5)	(30.1)	(21.1)	(37.6)	(20.9)	(14.7)
5/8	8,915	5,015	3,010	11,525	6,485	4,540	19,160	10,780	7,545	13,445	7,490	5,245
	(39.7)	(22.3)	(13.4)	(51.3)	(28.8)	(20.2)	(85.2)	(48.0)	(33.6)	(59.8)	(33.3)	(23.3)
3/4	13,190	7,420	4,450	17,060	9,600	6,720	28,365	15,955	11,170	16,920	9,425	6,600
	(58.7)	(33.0)	(19.8)	(75.9)	(42.7)	(29.9)	(126.2)	(71.0)	(49.7)	(75.3)	(41.9)	(29.4)
7/8	18,210	10,245	6,145	23,550	13,245	9,270	39,150	22,020	15,415	23,350	13,010	9,105
1/0	(81.0)	(45.6)	(27.3)	(104.8)	(58.9)	(41.2)	(174.1)	(97.9)	(68.6)	(103.9)	(57.9)	(40.5)
1	23,890	13,440	8,065	30,890	17,380	12,165	51,360	28,890	20,225	30,635	17,065	11,945
'	(106.3)	(59.8)	(35.9)	(137.4)	(77.3)	(54.1)	(228.5)	(128.5)	(90.0)	(136.3)	(75.9)	(53.1)
1-1/8	30,105	16,930	10,160	38,930	21,900	15,330	64,725	36,410	25,485	29,585	16,640	9,985
	(133.9)	(75.3)	(45.2)	(173.2)	(97.4)	(68.2)	(287.9)	(162.0)	(113.4)	(131.6)	(74.0)	(44.4)
1-1/4	38,225	21,500	12,900	49,425	27,800	19,460	82,175	46,220	32,355	37,565	21,130	12,680
1-1/4	(170.0)	(95.6)	(57.4)	(219.9)	(123.7)	(86.6)	(365.5)	(205.6)	(143.9)	(167.1)	(94.0)	(56.4)
1-1/2	55,415	31,170	18,700	71,655	40,305	28,215	119,140	67,015	46,910	54,460	30,630	18,380
	(246.5)	(138.7)	(83.2)	(318.7)	(179.3)	(125.5)	(530.0)	(298.1)	(208.7)	(242.2)	(136.2)	(81.8)
1-3/4	74,935	42,150	25,290	96,900	54,505	38,155	161,110	90,625	63,435	73,645	41,425	24,855
1-5/4	(333.3)	(187.5)	(112.5)	(431.0)	(242.4)	(169.7)	(716.6)	(403.1)	(282.2)	(327.6)	(184.3)	(110.6)
2	98,600	55,460	33,275	127,500	71,720	50,205	211,990	119,245	83,470	96,900	54,505	32,705
	(438.6)	(246.7)	(148.0)	(567.1)	(319.0)	(223.3)	(943.0)	(530.4)	(371.3)	(431.0)	(242.4)	(145.5)
2-1/4	-	-	-	-	-	-	275,585	155,020	108,515	-	-	-
Z-1/4	-	-	-	-	-	-	(1,225.9)	(689.6)	(482.7)	-	-	-
2-1/2	-	-	-	-	-	-	339,185	190,790	133,555	-	-	-
2-1/2	-	-	-	-	-	-	(1,508.8)	(848.7)	(594.1)	-	-	-

Steel factored resistance for Hilti HIT-Z anchor rods for use with CSA A23.3-14 Annex D

Nominal	(H	HIT-Z HIT-HY 200 V3 only) ⁴	(HIT-HY 2	HIT-Z-R 200 V3 only) Stainle	ess Steel ⁴
anchor diameter in.	Tensile ¹ N _{sar} Ib (kN)	Shear² V _{sar} Ib (kN)	Seismic Shear ³ V _{sar,eq} Ib (kN)	Tensile ¹ N _{sar} Ib (kN)	Shear ² V _{sar} Ib (kN)	Seismic Shear ³ V _{sar,eq} Ib (kN)
3/8	4,345	1,775	1,155	4,345	2,420	2,420
3/6	(19.3)	(7.9)	(5.1)	(19.3)	(10.8)	(10.8)
1./0	7,960	3,250	2,115	7,960	4,435	3,325
1/2	(35.4)	(14.5)	(9.4)	(35.4)	(19.7)	(14.8)
E /0	12,675	5,180	3,365	12,675	7,065	4,590
5/8	(56.4)	(23.0)	(15.0)	(56.4)	(31.4)	(20.4)
0.44	18,725	7,650	4,975	18,725	10,435	6,785
3/4	(83.3)	(34.0)	(22.1)	(83.3)	(46.4)	(30.2)

Tensile = A_{50.N} Φ₅ f_{tat} R as noted in CSA A23.3-14 Eq. D.2.

Shear = A_{50.N} Φ₅ 0.60 f_{tat} R as noted in CSA A23.3-14 Eq. D.21.

Seismic Shear = A_{50.N} V₅ 0.80 f_{tat} R as noted in CSA A23.3-14 Eq. D.31.

Seismic Shear = A_{50.N} V₅₀ 1.8 eduction factor for seismic shear only. See CSA A23.3 Annex D for additional information on seismic applications. Seismic shear for HIT-RE 500 V3 may be increased for HAS-E, HAS-B, and HAS-R CW1 and CW2 threaded rods (including HDG rods). Refer to ESR-3814.

HAS-V, HAS-E (3/8-in to 2-in), HAS-B, and HAS-R (Ciass 1; 1-1/8-in to 2-in) threaded rods are considered ductile steel elements (included HDG rods).

HAS-E (2-1/4-in to 2-1/2-in) and HAS-R (CW1 and CW2; 3/8-in to 1-in) threaded rods are considered brittle steel elements (including HDG rods).

^{6 3/8-}inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

¹ Tensile = A_{ss,N} Φ_s f_{uta} R as noted in CSA A23.3-14 Eq. D.2.
2 Shear value for HIT-Z and HIT-Z-R anchor rods is based on static shear testing with V_{ssc} ≤ A_{ssc,V} Φ_s 0.60 f_{uta} R as noted in CSA A23.3-14 Eq. D.31.
3 Seismic Shear = α_{V_{ssc}} · Reduction factor for seismic shear only. See CSA A23.3 Annex D for additional information on seismic applications. Seismic shear for HIT-RE 500 V3 may be increased for HAS-R rods. Refer to ESR-3814.
4 HAS-R stainless steel threaded rods, HIT-Z, and HIT-Z-R anchor rods are considered brittle steel elements.

TECHNICAL DATA — ALLOWABLE STRESS DESIGN (ASD)

The following technical data is for adhesive anchors that will be designed in accordance with the Allowable Stress Design method (ASD). This includes Hilti HIT-HY 270 for masonry, HIT-HY 200 V3 for masonry, HIT-HY 100 for masonry, HIT-HY 10 PLUS, HIT-1, HTE 50 and HVU Capsules.

Note:

- Hilti HAS-V-36 threaded rods are not applicable for use with Hilti HVU Capsules since the end of the rod does not have a chisel point to break and mix the capsules during installation.
- Hilti HIT-Z Anchor Rods do not have ASD load data since they are only used in conjunction with Hilti HIT-HY 200 V3.

Allowable steel strength for Hilti HAS threaded rods 1

Nominal anchor	,	IAS-V-36 HDG 554 Gr. 36 ²	HAS-E-55 / H ASTM F15		ASTM A1	HAS-B-105 HDG 93 B7 and 554 Gr. 105 ²	HAS-R Stainless Steel ASTM F593 (3/8-in to 1-in) ASTM A193 (1/4-in and 1-1/8-in to 2-in)		
diameter in.	Tensile lb (kN)	Shear lb (kN)	Tensile lb (kN)	Shear Ib (kN)	Tensile lb (kN)	Shear lb (kN)	Tensile lb (kN)	Shear lb (kN)	
1/4	-	-	-	-	-	-	925	475	
1/4	-	-	-	-	-	-	(4.1)	(2.1)	
3/8	2,115	1,090	2,730	1,410	4,555	2,345	3,645	1,875	
3/0	(9.4)	(4.8)	(12.1)	(6.3)	(20.3)	(10.4)	(16.2)	(8.3)	
1/2	3,755	1,935	4,860	2,505	8,095	4,170	6,480	3,335	
1/2	(16.7)	(8.6)	(21.6)	(11.1)	(36.0)	(18.5)	(28.8)	(14.8)	
E /0	5,870	3,025	7,595	3,910	12,655	6,520	10,125	5,215	
5/8	(26.1)	(13.5)	(33.8)	(17.4)	(56.3)	(29.0)	(45.0)	(23.2)	
0./4	8,455	4,355	10,935	5,635	18,225	9,390	12,390	6,385	
3/4	(37.6)	(19.4)	(48.6)	(25.1)	(81.1)	(41.8)	(55.1)	(28.4)	
7/8	11,510	5,930	14,880	7,665	24,805	12,780	16,865	8,690	
1/0	(51.2)	(26.4)	(66.2)	(34.1)	(110.3)	(56.8)	(75.0)	(38.7)	
	15,035	7,745	19,440	10,015	32,400	16,690	22,030	11,350	
1	(66.9)	(34.5)	(86.5)	(44.5)	(144.1)	(74.2)	(98.0)	(50.5)	
1 1 /0	19,025	9,800	24,600	12,675	41,005	21,125	18,695	9,630	
1-1/8	(84.6)	(43.6)	(109.4)	(56.4)	(182.4)	(94.0)	(83.2)	(42.8)	
4 4 /4	23,490	12,100	30,375	15,645	50,620	26,080	23,085	11,890	
1-1/4	(104.5)	(53.8)	(135.1)	(69.6)	(225.2)	(116.0)	(102.7)	(52.9)	
1-1/2	33,825	17,425	43,735	22,530	72,895	37,550	33,240	17,125	
1-1/2	(150.5)	(77.5)	(194.5)	(100.2)	(324.3)	(167.0)	(147.9)	(76.2)	
1.0/4	46,035	23,715	59,530	30,665	99,220	51,110	45,245	23,305	
1-3/4	(204.8)	(105.5)	(264.8)	(136.4)	(441.4)	(227.3)	(201.3)	(103.7)	
	60,130	30,975	77,755	40,055	129,590	66,760	59,095	30,440	
2	(267.5)	(137.8)	(345.9)	(178.2)	(576.4)	(297.0)	(262.9)	(135.4)	
0.1/4	-	-	-	-	164,015	84,490	-	-	
2-1/4	-	-	-	-	(729.6)	(375.8)	-	-	
0.1/0	-	-	-	-	202,485	104,310	-	-	
2-1/2	-	-	-	-	(900.7)	(464.0)	-	-	

 $^{^1}$ Steel strength as defined in AISC Manual of Steel Construction (ASD): Tensile = 0.33 x F $_{\rm u}$ x Nominal Area Shear = 0.17 x F $_{\rm u}$ x Nominal Area

² 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

TECHNICAL DATA — ALLOWABLE STRESS DESIGN (ASD) - CONTINUED

The following technical data is for adhesive anchors that will be designed in accordance with the Allowable Stress Design Method (ASD). This includes Hilti HIT-HY 270 for masonry, HIT-HY 200 V3 for masonry, HIT-HY 100 for masonry, HIT-ICE, HIT-HY 10 PLUS, HIT-1, HTE 50 and HVU Capsules. Note:

- Hilti HAS-V-36 threaded rods are not applicable for use with Hilti HVU Capsules since the end of the rod does not have a chisel point to break and mix the capsules during installation.
- Hilti HIT-Z Anchor Rods do not have ASD load data since they are only used in conjunction with Hilti HIT-HY 200 V3.

Ultimate steel strength for Hilti HAS threaded rods 1

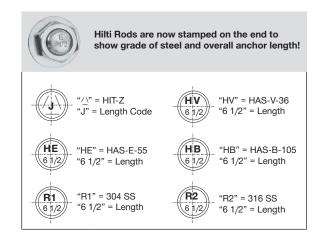
Nominal anchor		-36 / HAS-V-3 ГМ F1554 Gr.		HAS-E-55 / HAS-E-55 HDG ASTM F1554 Gr. 55 ²			AS ⁻	105 / HAS-B- TM A193 B7 : M F 1554 Gr.	and	HAS-R Stainless Steel ASTM F593 (3/8-in to 1-in) ASTM A193 (1/4-in and 1-1/8-in to 2-in)			
diameter in.	Yield lb (kN)	Tensile lb (kN)	Shear lb (kN)	Yield lb (kN)	Tensile lb (kN)	Shear lb (kN)	Yield lb (kN)	Tensile lb (kN)	Shear lb (kN)	Yield lb (kN)	Tensile lb (kN)	Shear lb (kN)	
1/4	-	-	-	-	-	-	-	-		955 (4.2)	2,100 (9.3)	1,260 (5.6)	
3/8	2,790 (12.4)	4,800 (21.4)	2,880 (12.8)	4,265 (19.0)	6,210 (27.6)	3,725 (16.6)	8,140 (36.2)	10,350 (46.0)	6,210 (27.6)	5,040 (22.4)	8,280 (36.8)	4,970 (22.1)	
1/2	5,110 (22.7)	8,540 (38.0)	5,125 (22.8)	7,805 (34.7)	11,040 (49.1)	6,625 (29.5)	14,900 (66.3)	18,405 (81.9)	11,040 (49.1)	9,225 (41.0)	14,725 (65.5)	8,835 (39.3)	
5/8	8,135 (36.2)	13,345 (59.4)	8,005 (35.6)	12,430 (55.3)	17,260 (76.8)	10,355	23,730 (105.6)	28,765 (128.0)	17,260 (76.8)	14,690 (65.3)	23,010 (102.4)	13,805	
3/4	12,040 (53.6)	19,220 (85.5)	11,530 (51.3)	18,400 (81.8)	24,850 (110.5)	14,910 (66.3)	35,125 (156.2)	41,420 (184.2)	24,850 (110.5)	15,055 (67.0)	28,165 (125.3)	16,900 (75.2)	
7/8	16,620 (73.9)	26,155 (116.3)	15,695 (69.8)	25,395 (113.0)	33,825 (150.5)	20,295 (90.3)	48,480 (215.6)	56,370 (250.7)	33,825 (150.5)	20,775 (92.4)	38,335 (170.5)	23,000 (102.3)	
1	21,805	34,165 (152.0)	20,500 (91.2)	33,315 (148.2)	44,180 (196.5)	26,505 (117.9)	63,600 (282.9)	73,630 (327.5)	44,180 (196.5)	27,255	50,070 (222.7)	30,040 (133.6)	
1-1/8	27,480 (122.2)	43,240 (192.3)	25,945 (115.4)	41,980 (186.7)	55,915 (248.7)	33,550 (149.2)	80,145	93,190 (414.5)	55,915 (248.7)	22,900 (101.9)	42,495 (189.0)	25,495 (113.4)	
1-1/4	34,890	53,385	32,030	53,300	69,030	41,420	101,755	115,050	69,030	29,075	52,465	31,480	
1-1/2	(155.2) 50,590	(237.5) 76,870	(142.5) 46,125	(237.1) 77,290	(307.1)	(184.2) 59,640	(452.6) 147,550	(511.8)	(307.1)	(129.3)	(233.4) 75,545	(140.0) 45,325	
1-3/4	(225.0) 68,380	(341.9)	(205.2) 62,780	(343.8)	(442.2)	(265.3) 81,180	(656.3) 199,445	(736.9)	(442.2) 135,295	(187.5)	(336.0)	(201.6) 61,695	
2	(304.2) 89,935	(465.4) 136,660	(279.3) 81,995	(464.7) 137,400	(601.8) 176,715	(361.1)	(887.2) 262,315	(1,003.0) 294,525	(601.8) 176,715	(253.5) 74,945	(457.4) 134,305	(274.4) 80,580	
2-1/4	(400.0)	(607.9)	(364.7)	(611.2)	(786.1)	(471.6)	(1,166.8) 341,005	(1,310.1) 372,755	(786.1) 223,655	(333.4)	(597.4)	(358.4)	
2-1/2	-	-	-	-	-	-	(1,516.9) 419,875	(1,658.1) 460,195	(994.9) 276,115	-	-	-	
	-	-	-	-	-	-	(1,867.7)	(2,047.0)	(1,228.2)	-	-	-	

¹ Steel strength as defined in AISC Manual of Steel Construction (LRFD):

Yield = F_y x Tensile stress area Tensile = 0.75 x F_x x Nominal Area

Shear = 0.45 x F_u x Nominal Area

^{2 3/8-}inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.



ORDERING INFORMATION

Hilti HIT-Z Anchor rods for Hilti HIT-HY 200 V3 Anchoring system

HIT-Z Carbon Ste	el	HIT-Z-R 316 Stainless	Steel	HIT-Z (-R) Length Code
Description	Qty	Description	Qty	
3/8" x 3-3/8"	40	3/8" x 3-3/8"	40	D
3/8" x 4-3/8"	40	3/8" x 4-3/8"	40	F
3/8"x 5-1/8"	40	3/8"x 5-1/8"	40	Н
3/8" x 6-3/8"	40	3/8" x 6-3/8"	40	J
1/2" x 4-1/2"	20	1/2" x 4-1/2"	20	F
1/2" x 6-1/2"	20	1/2" x 6-1/2"	20	J
1/2" x 7-3/4"	20	1/2" x 7-3/4"	20	М
5/8" x 6"	12	5/8" x 6"	12	I
5/8" x 8"	12	5/8" x 8"	12	М
5/8" x 9-1/2"	12	5/8" x 9-1/2"	12	Р
3/4" x 6-1/2"	6	3/4" x 6-1/2"	6	J
3/4" x 8-1/2"	6	3/4" x 8-1/2"	6	N
3/4" x 9-3/4"	6	3/4" x 9-3/4"	6	Q

Overview of the Hilti HAS standard off-the-shelf anchor rod program for Hilti chemical anchoring systems¹

HAS-V does not come with chisel point

HAS-E, HAS-B, and HAS-R all come with chisel point

HAS-V does not come with chisel point HAS-E, HAS-B, and HAS-R all come with chisel point											
HAS-V-36		HAS-E-55		HAS-B-105		HAS-B-105 HDG Hot-dipped galvanized		HAS-R 304 Stainless Steel		HAS-R 316 Stainless Steel	
Description	Qty	Description	Qty	Description	Qty	Description	Qty	Description	Qty	Description	Qty
1/4" x 3"		-	-	-	-	-	-	-	-	-	T-
1/4" x 4-1/2"		-	-	-	-	-	-	-	-	-	-
-	-	3/8" x 3"	20	-	-	-	-	-	-	-	-
3/8" x 4-3/8"	20	3/8" x 4-3/8"	20	-	-	-	-	-	-	-	-
3/8" x 5-1/8"	20	3/8" x 5-1/8"	20	3/8" x 5-1/8"	20	3/8" x 5-1/8"	-	3/8" x 5-1/8"	20	3/8" x 5-1/8"	20
3/8" x 8"	10	3/8" x 8"	10	-	-	-	-	3/8" x 8"	10	3/8" x 8"	10
-	-	3/8" x 12"	10	-	-	-	-	-	-	-	-
-	-	1/2" x 3-1/8"	20	-	-	-	-	-	-	-	-
1/2" x 4-1/2"	20	1/2" x 4-1/2"	20	-	-	-	-	-	-	-	-
1/2" x 6-1/2"	20	1/2" x 6-1/2"	20	1/2" x 6-1/2"	20	-	-	1/2" x 6-1/2"	20	1/2" x 6-1/2"	20
1/2" x 8"	10	1/2" x 8"	10	-	-	1/2" x 8"	10	1/2" x 8"	10	1/2" x 8"	10
-	-	1/2" x 10"	10	-	-	-	-	1/2" x 10"	10	1/2" x 11"	10
-	-	1/2" x 12"	10	-	-	-	-	-	-	1/2" x 12"	10
5/8" x 6"	10	5/8" x 6"	10	-	-	-	-	-	-	-	-
5/8" x 8"	10	5/8" x 8"	10	5/8" x 8"	10	5/8" x 8"	10	5/8" x 7-5/8"	20	5/8" x 7-5/8"	20
5/8" x 10"	10	5/8" x 9"	10	-	-	-	-	5/8" x 10"	10	5/8" x 9"	10
5/8" x 12"	10	5/8" x 12"	10	-	-	5/8" x 12"	10	-	-	5/8" x 12"	10
-	-	5/8" x 17"	10	-	-	-	-	-	-	-	-
3/4" x 6"	10	3/4" x 6"	10	-	-	-	-	-	-	-	-
3/4" x 8"	10	3/4" x 8"	10	-	-	-	-	-	-	-	-
3/4" x 10"	10	3/4" x 10"	10	3/4" x 10"	10	3/4" x 10"	10	3/4" x 9-5/8"	10	3/4" x 9-5/8"	10
-	-	3/4" x 11"	10	-	-	-	-	-	-	3/4" x 10"	10
3/4" x 12"	10	3/4" x 12"	10	•	-	-	-	3/4" x 12"	10	-	-
-	-	3/4" x 14"	10	3/4" x 14"	10	3/4" x 14"	10	3/4" x 14"	10	-	-
3/4" x 16"	10	3/4" x 17"	10	•	-	-	-	3/4" x 16"	10	3/4" x 16"	10
-	-	3/4" x 19"	8	-	-	3/4"x20"	8	-	-	-	-
-	-	3/4" x 21"	8	-	-	-	-	-	-	-	-
-	-	3/4" x 25"	4	-	-	-	-	-	-	-	-
-	-	7/8" x 10"	10	-	-	7/8" x 10"	10	7/8" x 10"	10	7/8" x 10"	10
	-	7/8" x 13"	8	-	-	7/8" x 12"	10	-	-	-	-
-	-	-	-	-	-	7/8" x 16"	10	-	-	7/8" x 16"	10
1" x 12"	4	1" x 12"	4	1" x 12"	4	-	-	1" x 12"	4	1" x 12"	4
-	-	1" x 14"	4	1" x 14"	4	-	-	-	-	-	-
-	-	1" x 16"	2	1" x 16"	2	1" x 16"	2	-	-	1" x 16"	2
-	-	1" x 20"	2	1" x 21"	2	1" x 21"	2	-	-	1" x 20"	2
	-	1-1/4" x 16"	2	1-1/4" x 16"	2	1-1/4" x 16"	2	-	-	-	-
-	-	1-1/4" x 22"	2	1-1/4" x 23"	2	-	-	-	-	-	

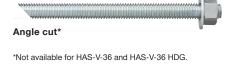
 $^{^{\}mbox{\tiny 1}}$ Additional diameters and lengths see extended anchor rod program on page 14.

January 2025 13

EXTENDED HILTI ANCHOR ROD PROGRAM ORDERING INFORMATION

The following threaded rod ordering information is for the Hilti extended rod program according to the material specifications on page 2.

Extended rod offering


						Exteriaca roa c					
				Material							
				Electro plated			Н	lot dip galvanize	Stainless steel		
		Min. length in.	Max. length in.	ASTM F1554 Grade 36	ASTM F1554 Grade 55	ASTM F1554 Grade 105	ASTM F1554 Grade 36	ASTM F1554 Grade 55	ASTM F1554 Grade 105	SS304	SS316
	1/4	2	144								
	3/81	2	144								
	1/2	2	144								
	5/8	3	144								
(in.)	3/4	4	144								
Nominal anchor diameter (in.)	7/8	4	144								
r diar	1	5	144								
ncho	1-1/8	6	144								
nal a	1-1/4	6	144								
Nomi	1-1/2	8	144								
_	1-3/4	9	144								
	2	11	144								
	2-1/4	12	144								
	2-1/2	13	144								

⁼ typical lead time 2–4 working days plus shipping ² = available but longer lead time

² up to following quantities: 1/4" to 3/4" > 250 pieces, 7/8" to 1-1/4" > 100 pieces, 1-1/2" to 2-1/2" > 50 pieces. Bigger quantities contact Hilti for lead time.

Hilti threaded rods in the Hilti Extended Anchor Rod Program are stamped on the end to show grade of steel.						
HV	HAS-V-36 / HAS-V-36 HDG ASTM F1554, Grade 36					
HE	HAS-E-55 / HAS-E-55 HDG ASTM F1554, Grade 55					
HB	HAS-B-105 / HAS-B-105 HDG ASTM A193, Grade B7 ASTM F1554, Grade 105					
SS304 H R1	HAS-R 304SS 1/4-in. ASTM A193 Grade B8, Class 1 3/8-in. to 5/8-in. AISI Type 304 ASTM F593 CW1 3/4-in. to 1-in. AISI Type 304 ASTM F593 CW2 1-1/8-in. to 2-in. ASTM A193 Grade B8, Class 1					
SS316 H R2	HAS-R 316SS 1/4-in. ASTM A193 Grade B8M, Class 1 3/8-in. to 5/8-in. AISI Type 316 ASTM F593 CW1 3/4-in. to 1-in. AISI Type 316 ASTM F593 CW2 1-1/8-in. to 2-in. ASTM A193 Grade B8M, Class 1					

TWO END CUT OPTIONS AVAILABLE

Straight, or flat cut

¹ 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

In the US:

Hilti, Inc.

7250 Dallas Parkway, Suite 1000, Dallas, TX 75024

Customer Service: 1-800-879-8000 en español: 1-800-879-5000

Fax: 1-800-879-7000

www.hilti.com

Hilti is an equal opportunity employer. Hilti = registered trademark of Hilti, Corp. LI-9494 Schaan, Principality of Liechtenstein ©Copyright 2025 by Hilti, Inc.

In Canada:

Hilti (Canada) Corporation 2201 Bristol Circle Oakville ON | L6H 0J8 Canada

Customer Service: 1-800-363-4458

Fax: 1-800-363-4459

www.hilti.ca

The data contained in this literature was current as of the date of publication. Updates and changes may be made based on later testing. If verification is needed that the data is still current, please contact the Hilti Technical Support Specialists at 1-800-879-8000 (U.S.) or 1-800-363-4458 (Canada). All published load values contained in this literature represent the results of testing by Hilti or test organizations. Local base materials were used. Because of variations in materials, on-site testing is necessary to determine performance at any specific site.