Titen HD® Rod Coupler

Cracked

Concrete

The Titen HD rod coupler is designed to be used in conjunction with a single or multi-story rod tiedown system. This anchor provides a fast and simple way to attach threaded rod to a concrete stem wall or thickened slab footing. Unlike adhesive anchors, the installation requires no special tools, cure time or secondary setting process; just drill a hole and drive the anchor.

Features

- Now included in ESR-2713 for wind and seismic loading.
- The serrated cutting teeth and patented thread design enable the Titen HD rod coupler to be installed quickly and easily. Less installation time translates to lower installed cost.
- The specialized heat treating process creates tip hardness to facilitate cutting while the body remains ductile.
- No special setting tools are required. The Titen HD rod coupler installs with regular or hammer drill, ANSI size bits and standard sockets.
- Compatible with threaded rods in %" and 1/2" diameters.
- Use in dry interior environments only.

Codes: ICC-ES ESR-2713 (concrete);

City of LA Supplement within ESR-2713 (concrete);

FL15730 (concrete)

Material: Carbon steel

Coating: Zinc plated

Installation

Caution: Oversized holes in the base material will reduce or eliminate the mechanical interlock of the threads with base material and will reduce the anchor's load capacity. Use a Titen HD Rod Coupler one time only. Installing the anchor multiple times may result in excessive thread wear and reduce load capacity.

- 1. Drill a hole using the specified diameter carbide bit into the base material to a depth of at least ½" deeper than the required embedment.
- 2. Blow the hole clean of dust and debris using compressed air. Overhead application need not be blown clean.
- 3. Tighten the anchor with appropriate size socket until the head sits flush against base material.

Titen HD Rod Coupler Product Data

Size	Model	Accepts Rod Diameter (in.)	Drill Bit Diameter	Wrench Size	Quantity	
(in.)	No.		(in.)	(in.)	Box	Carton
3/8 X 63/4	THD37634RC	3/8	3/8	9/16	25	50
½ x 9¾	THD50934RC	1/2	1/2	3/4	20	40

Installation Sequence

Titen HD® Rod Coupler

Titen HD Rod Coupler Installation Information and Additional Data¹

	 _
IBC	LW

Characteristic	Symbol	11-2-	Mode	Model No.		
Unaracteristic		Units	THD37634RC	THD50934RC		
Installation Information						
Nominal Diameter	d _a	in.	3/8	1/2		
Drill Bit Diameter	d _{bit}	in.	3/8	1/2		
Internal Thread Diameter	d _{rh}	_	3/8	1/2		
Maximum Installation Torque ²	T _{inst,max}	ftlbf	50	65		
Maximum Impact Wrench Torque Rating	T _{impact,max}	ftlbf	150	340		
Minimum Hole Depth	h _{hole}	in.	31/2	41/2		
Nominal Embedment Depth	h _{nom}	in.	31/4	4		
Effective Embedment Depth	h _{ef}	in.	2.40	2.99		
Critical Edge Distance	C _{ac}	in.	3%	4½		
Minimum Edge Distance	C _{min}	in.	13/4			
Minimum Spacing	S _{min}	in.	3			
Minimum Concrete Thickness	h _{min}	in.	5	61/4		
Anchor Data						
Yield Strength	f _{ya}	psi	97,000			
Tensile Strength	f _{uta}	psi	110,000			
Minimum Tensile Stress Area	A _{se}	in. ²	0.099 0.183			
Axial Stiffness in Service Load Range — Uncracked Concrete	eta_{uncr}	lb./in.	672,000			
Axial Stiffness in Service Load Range — Cracked Concrete	$eta_{\it cr}$	lb./in.	345,000			

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.

^{2.} T_{inst,max} applies to installations using a calibrated torque wrench.

Figure 1.

Typical Titen HD Rod Coupler Installation
Through Blocking and Sill Plate

Titen HD Rod Coupler Block Height Requirement

Model No.	Shank Length (in.)	Nominal Embedment Depth (in.)	Sill Plate Thickness	Block Height (in.)
THD37634RC	6¾	31⁄4	2x	2
1003/034NC			3x	1
THD50934RC	03/	4	2x	41/4
100093400	9¾	4	3x	31/4

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Titen HD® Rod Coupler

Titen HD Rod Coupler Tension Strength Design Data¹

Characteristic	Symbol	Units	Model No.		
Characteristic		Units	THD37634RC	THD50934RC	
Anchor Category	1, 2 or 3	_	1		
Nominal Embedment Depth	h _{nom}	in.	31/4	4	
Steel Strength in Tension (ACI	318-19 17.6.1, ACI 31	8-14 17.4.1 or ACI 31	8-11 Section D.5.1)		
Tension Resistance of Steel	N _{sa}	lbf	10,890	20,130	
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	_	0.65		
Concrete Breakout Strength in Tens	ion (ACI 318-19 17.6.	2, ACI 318-14 17.4.2 (or ACI 318 Section D.5.2)		
Effective Embedment Depth	h _{ef}	in.	2.4	2.99	
Critical Edge Distance	C _{ac}	in.	35/8	41/2	
Effectiveness Factor — Uncracked Concrete	K _{uncr}	_	24		
Effectiveness Factor — Cracked Concrete	k _{cr}	_	17		
Modification factor	$\Psi_{\mathit{C},\mathit{N}}$	_	1		
Strength Reduction Factor — Concrete Breakout Failure ²	ϕ_{cb}	_	0.65		
Pullout Strength in Tension (ACI	318-19 17.6.3, ACI 3	18-14 17.4.3 or ACI 3	18-11 Section D.5.3)		
Pullout Resistance Uncracked Concrete (f'c = 2,500 psi)	N _{p,uncr}	lbf	N/A³	N/A³	
Pullout Resistance Cracked Concrete (f'c = 2,500 psi)	N _{p,cr}	lbf	2,7004	N/A³	
Strength Reduction Factor — Pullout Failure ²	$\phi_{\mathcal{D}}$	_	0.65		
Tension Strength for Seismic Applications	G (ACI 318-19 17.10.3,	ACI 318-14 17.2.3.3	or ACI 318-11 Section D.	.3.3.3)	
Nominal Pullout Strength for Seismic Loads (f'c = 2,500 psi)	N _{p,eq}	lbf	2,7004	N/A³	
Strength Reduction Factor for Pullout Failure ²	φ _{eq}	_	0.65		

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.

^{2.} The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

^{3.} N/A denotes that pullout resistance does not govern and does not need to be considered.

^{4.} The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by (f'₀/2,500)^{0.5}.