

Torq-Cut[™] Anchor Installation and Additional Data¹

Obovostavistis	Cumhal	Unite	Nominal Anchor Diameter (in.)			
Characteristic	Symbol	Units	1⁄2	5⁄8	3⁄4	
l	nstallation Inform	nation				
Drill Bit Diameter	d	in.	7/8	1	1 1⁄4	
Pre-Set Fixture Hole Diameter Range ²	d _c	in.	9/16-3/4	11/16-7/8	13/16-11/8	
Through-Set Minimum Fixture Hole Diameter ²	d _c	in.	15/16	1 1⁄16	1 5⁄16	
Installation Torque	Tinst	ftlb.	90	185	240	
Minimum Nominal Embedment Depth	h _{nom}	in.	6%	81%	11 3/8	
Minimum Overall Depth of Drilled Hole	h _{hole}	in.	7	91⁄2	12	
Critical Edge Distance	Cac	in.	85%	12	15%	
Minimum Edge Distance	C _{min}	in.	7	10	73⁄4	
Minimum Spacing	S _{min}	in.	7	9	73⁄4	
Minimum Concrete Thickness	h _{min}	in.	8%	12	15%	
	Additional Da	ta				
Anchor Category	Category		1	1	1	
Yield Strength	f _{ya}	ksi	80	80	80	
Tensile Strength	f _{uta}	ksi	100	100	100	
Effective Tensile and Shear Stress Area	A _{se}	in ²	0.142	0.226	0.334	
Axial Stiffness in Service Load Range – uncracked concrete	β_{uncr}	lb./in.		635,830		
Axial Stiffness in Service Load Range - cracked concrete	β_{cr}	lb./in.	346,694			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D.

2. The clearance must comply with applicable code requirements for the connected element.

Torq-Cut[™] Tension Strength Design Data¹

 The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.

2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC, or ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318 D.4.4. Torq-Cut[™] anchors are ductile steel elements as defined in ACI 318 D.1.

- 3. N/A (Not Applicable) denotes that pullout resistance does not need to be considered.
- 4. The tabulated value of ϕ_p applies when the load combinations of Section 1605.2.1 of the IBC, or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, appropriate value of ϕ must be determined in accordance with ACI 318 Section D.4.4(c).
- 5. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC, or ACI 318 Section 9.2 are used and the requirements of ACI 318 Section D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318 Section D.4.3 for Condition A are allowed. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 Section D.4.3 for Condition A are met, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318 D.4.3 (b ACI 318 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318 D.4.4(c).

IBC

- 6. For sand-lightweight concrete, in lieu of ACI 318 Section D.3.6, modify the value of concrete breakout strength, $N_{p,cr}$, $N_{p,uncr}$ and N_{eq} by 0.6. All-lightweight concrete is beyond the scope of this table.
- 7. Pullout strength applies for 2,500 psi $\leq f'_c \leq 3,500$ psi concrete. For $f'_c > 3,500$ psi concrete, pullout strength need not be considered since steel controls for concrete strengths greater than 3,500 psi.

Torq-Cut [™] Shear Strength Design Data ¹									
Characteristic	Symbol	Units	Nominal Anchor Diameter (in.)						
	Symbol	Units	1⁄2	5⁄8	3⁄4				
Nominal Embedment Depth	h _{nom}	in.	6%	81%	11%				
Steel Strength i	n Shear								
Pre-Set Configuration: Steel Strength in Shear	V _{sa}	lb.	8,515	13,560	20,070				
Through-Set Configuration: Steel Strength in Shear	V _{sa}	lb.	26,065	38,720	49,235				
Strength Reduction Factor – Steel Failure	ϕ_{sa}		0.65 ²						
Concrete Breakout Strength in Shear ⁵									
Outside Diameter	da	in.	7⁄8	1	1 3⁄4				
Load Bearing Length of Anchor in Shear	ℓ_e	in.	4.3	5.8	7.5				
Strength Reduction Factor – Concrete Breakout Failure ϕ_{cb} — 0.70 ³									
Concrete Pryout Stree	ngth in Shea	r							
Coefficient for Pryout Strength	k _{cp}	lb.	2.0						
Strength Reduction Factor – Concrete Pryout Failure	ϕ_{cp}	_	0.704						
Steel Strength in Shear for Seismic Applications									
Pre-Set Configuration: Steel Strength in Shear for Seismic Loads	V _{eq}	lb.	8,515	13,560	20,070				
Through-Set Configuration: Steel Strength in Shear for Seismic Loads	V _{eq}	lb.	15,640	30,975	44,310				
Strength Reduction Factor – Steel Failure	ϕ_{sa}			0.65 ²					

1. The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.

2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318 D.4.4.

Torq-Cut[™] anchors are ductile steel elements as defined in ACI 318 D.1.

3. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318 D.4.3 for Condition A are allowed. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 Section 0.4.3 for Condition A are met, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318 D.4.3(c). If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318 D.4.3(c) and D.4.4(c).

4. The tabulated value of ϕ_{cp} applies when both the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) for Condition B are met. if the load combinations of ACI 318 Appendix C are used, appropriate value of ϕ_{cp} must be determined in accordance with ACI 318 Section D.4.4(c).

5. For sand-lightweight concrete, in lieu of ACI 318 Section D.3.6, modify the value of concrete breakout strength by 0.6. Alllightweight concrete is beyond the scope of this table. SIMPS

Strong⁻

C-A-2016 @ 2015 SIMPSON STRONG-TIE COMPANY INC.

Torq-Cut[™] Tension Design Strengths in Normal-Weight Concrete (f'_c = 2,500 psi)

		Embed. Concrete	Concrete Edge Thickness Distance h _{min} c _{ac}	Minimum Edge Distance	Tension Design Strength (lb.)							
Anchor Dia. (in.) Nominal Embed. Depth (in.)	Embed.				Edge Distances = c_{ac} on all sides				Edge Distances = c_{min} on one side and c_{ac} on three sides			
		h _{min} (in.)		C _{min} (in.)	SDC A-B ⁵ SDC C-F ^{6,7}		C-F ^{6,7}	SDC A-B⁵		SDC C-F ^{6,7}		
	()	()	()	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	
1/2	6%	85⁄8	8%	7	10,645	9,410	8,065	7,060	9,190	8,040	6,895	6,030
5⁄8	81⁄8	12	12	10	16,950	12,500	13,235	9,375	15,370	10,885	11,525	8,165
3⁄4	113⁄8	15%	15%	7¾	25,090	22,395	19,195	16,800	16,385	14,335	12,290	10,755

1. Tension design strengths are based on the strength design provisions of ACI 318-11 Appendix D.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Strength reduction factor, ϕ , is based on using a load combination from ACI 318-11 Section 9.2.

5. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

6. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.

7. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

Torq-Cut $^{\rm \tiny M}$ Allowable Tension Loads in Normal-Weight Concrete (f' $_{\rm c}$ = 2,500 psi) — Static Load

IBC

Dia. Depth	Min Concrete		Minimum	Allowable Tension Load (lb.)					
	h _{min}	Critical Edge Distance c _{ac} (in.)	Distance c _{min}	Edge Distances	= c _{ac} on all sides	Edge Distances = c_{min} on one side and c_{ac} on three sides			
()	(in.)	(in.)		(in.)	Uncracked	Cracked	Uncracked	Cracked	
1⁄2	6%	8%	8%	7	7,605	6,720	6,565	5,745	
5⁄8	81⁄8	12	12	10	12,105	8,930	10,980	7,775	
3⁄4	113⁄8	15%	15%	7¾	17,920	15,995	11,705	10,240	

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of $\alpha = 1.4$. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

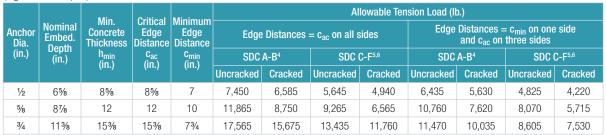
2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

C-A-2016 @ 2015 SIMPSON STRONG-TIE COMPANY INC.

Mechanical Anchors

Torq-Cut[™] Allowable Tension Loads in Normal-Weight Concrete (f'_c = 2,500 psi) — Wind Load


					Allowable Tension Load (lb.)				
Anchor Dia. (in.)		Minimum Edge Distance c _{min} (in.)		tances = Ill sides	$\begin{array}{l} \mbox{Edge Distances} = c_{min} \mbox{ on one} \\ \mbox{side and } c_{ac} \mbox{ on three sides} \end{array}$				
()		()	()		Uncracked	Cracked	Uncracked	Cracked	
1⁄2	6%	8%	8%	7	6,385	5,645	5,515	4,825	
5⁄8	81%	12	12	10	10,170	7,500	9,220	6,530	
3⁄4	11%	15%	15%	7¾	15,055	13,435	9,830	8,600	

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of $\alpha = \%.6 = 1.67$. The conversion factor α is based on the load combination assuming 100% wind load.

Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

Torq-Cut[™] Allowable Tension Loads in Normal-Weight Concrete (f'_c = 2,500 psi) — Seismic Load

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of $\alpha = \frac{1}{2}$. The conversion factor α is based on the load combination assuming 100% seismic load.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

5. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.

6. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

SIMPSON Strong-Tie

IBC

IBC